summaryrefslogtreecommitdiff
path: root/A_Textbook_of_Applied_Electronics_by_R_S_Sedha/chapter26_5.ipynb
blob: 41dd2f3c3f4fac79c617bc44e3e5bb021c4db737 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
{
 "metadata": {
  "name": "",
  "signature": "sha256:1adbacabb5391b7ec0914bdea7be4967c3225d247b9edb92e72750634ec2b9e5"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 26 , Multistage BJT Amplifiers"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.1 , Page Number 658"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "Av1 = 10.0                          #Voltage gain1\n",
      "Av2 = 20.0                          #Voltage gain2\n",
      "Av3 = 40.0                          #Voltage gain3\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Av = Av1 * Av2 * Av3                #Voltage gain\n",
      "Gv1 = 20 * math.log10(Av1)               #dB voltage gain1\n",
      "Gv2 = 20 * math.log10(Av2)               #dB voltage gain2\n",
      "Gv3 = 20 * math.log10(Av3)               #dB voltage gain3\n",
      "Gv = Gv1 + Gv2 + Gv3                #dB voltage gain\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Overall voltage gain is \",Av,\".\\nTotal dB voltage gain is \",round(Gv),\" dB.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Overall voltage gain is  8000.0 .\n",
        "Total dB voltage gain is  78.0  dB.\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.2 , Page Number 659"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "n = 3                       #Number of amplified stages\n",
      "Vin1 = 0.05                 #Input to first stage (in volts peak-to-peak)\n",
      "Vout3 = 150.0               #Output of final stage (in volts peak-to-peak)\n",
      "Av1 = 20.0                  #Voltage gain of first stage \n",
      "Vin3 = 15.0                 #Input of final stage (in volts peak-to-peak)  \n",
      "\n",
      "#Calculation\n",
      "\n",
      "Av = Vout3 / Vin1           #Overall voltage gain\n",
      "Av3 = Vout3 / Vin3          #Voltage gain of third stage\n",
      "Av2 = Av / (Av1 * Av3)      #Voltage gain of second stage\n",
      "Vin2 = Vin3 / Av2           #Input voltage gain of second stage                 \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Overall voltage gain is \",Av,\".\\nVoltage gain of 2nd and 3rd stage is \",Av2,\" and \",Av3,\".\\nInput voltage of the second stage is \",Vin2,\" Vpk-pk.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Overall voltage gain is  3000.0 .\n",
        "Voltage gain of 2nd and 3rd stage is  15.0  and  10.0 .\n",
        "Input voltage of the second stage is  1.0  Vpk-pk.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.3 , Page Number 663"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                        #Source voltage (in volts)\n",
      "RC = 5.0 * 10**3                  #Collector resistance (in ohm) \n",
      "RB = 1.0 * 10**6                  #Base resistance (in ohm)\n",
      "RE = 1.0 * 10**3                  #Emitter resistance (in ohm)\n",
      "RL = 10.0 * 10**3                 #Load resistance (in ohm)\n",
      "beta1 = beta2 = 100.0             #Common emitter current gain\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IE = VCC /(RE + RB/beta1)         #Emitter current (in Ampere)\n",
      "r1e = 25.0/IE * 10**-3            #a.c. emitter diode resistance (in ohm)\n",
      "Ri1 = beta1 * r1e                 #Input resistance of first stage (in ohm)\n",
      "Ri2 = beta2 * r1e                 #Input resistance of second stage (in ohm)\n",
      "Ro1 = RC * Ri2 / (RC + Ri2)       #Output resistance of first stage (in ohm)\n",
      "Ro2 = RC * RL / (RC + RL)         #Output resitance of second stage (in ohm)\n",
      "Av1 = Ro1 / r1e                   #Voltage gain of first stage\n",
      "Av2 = Ro2 / r1e                   #Voltage gain of second stage\n",
      "Av = Av1 * Av2                    #Overall voltage gain\n",
      "Gv = 20 * math.log10(Av)               #Overall dB voltage gain\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Input resistance of first and scond stage is \",round(Ri1),\" ohm and \",round(Ri2),\" ohm.\\nOutput resistance of first and second stage is \",round(Ro1,1),\" ohm and \",round(Ro2,1),\" ohm.\\nVoltage gain of first and second stage is \",round(Av1),\" and \",round(Av2,1),\".\\nOverall voltage gain and dB voltage gain is \",round(Av),\" and \",round(Gv,1),\" dB.\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Input resistance of first and scond stage is  2750.0  ohm and  2750.0  ohm.\n",
        "Output resistance of first and second stage is  1774.2  ohm and  3333.3  ohm.\n",
        "Voltage gain of first and second stage is  65.0  and  121.2 .\n",
        "Overall voltage gain and dB voltage gain is  7820.0  and  77.9  dB.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.4 , Page Number 664"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 15.0                        #Source voltage (in volts)\n",
      "RC = 3.3 * 10**3                  #Collector resistance (in ohm) \n",
      "RE = 1.0 * 10**3                  #Emitter resistance (in ohm)\n",
      "RL = 10.0 * 10**3                 #Load resistance (in ohm)\n",
      "R1 = 33.0 * 10**3                 #Resistance (in ohm)\n",
      "R2 = 8.2 * 10**3                  #Resistance (in ohm)\n",
      "beta1 = beta2 = 100.0             #Common emitter current gain\n",
      "VBE = 0.7                         #Emitter-to-base voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 / (R1 + R2)        #Thevenin's voltage (in volts)\n",
      "Rth = R1 * R2 / (R1 + R2)         #Thevenin's equivalent resistance (in ohm)\n",
      "IE = (Vth - VBE)/(RE + Rth/beta1) #Emitter current (in Ampere)\n",
      "r1e = 25.0/IE * 10**-3            #a.c. emitter resistance (in ohm)\n",
      "Ri2 = beta1 * r1e                 #Input resistance of second stage (in ohm)\n",
      "Ro1 = RC * Ri2 / (RC + Ri2)       #Output resistance of first stage (in ohm)\n",
      "Ro2 = RC * RL /(RC + RL)          #Output resistance of second stage (in ohm)\n",
      "Av1 = Ro1 / r1e                   #Voltage gain of the first stage\n",
      "Av2 = Ro2 / r1e                   #Voltage gain of second stage\n",
      "Av = Av1 * Av2                    #Overall voltage gain\n",
      "Gv = 20 * math.log10(Av)               #Overall voltage (in decibels)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Voltage gain of stage one and two are as follows \",round(Av1,2),\" and \",round(Av2,2),\".\\nOverall voltage gain is \",round(Av),\".\\nOverall voltage gain in decibels is \",round(Gv,1),\" dB.\"\n",
      "\n",
      "#Slight variation in the value of Av2 and Av due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage gain of stage one and two are as follows  73.9  and  212.85 .\n",
        "Overall voltage gain is  15728.0 .\n",
        "Overall voltage gain in decibels is  83.9  dB.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.5 , Page Number 669"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                        #Source voltage (in volts)\n",
      "RB = 470.0 * 10**3                #Base resistance (in ohm) \n",
      "RE = 1.0 * 10**3                  #Emitter resistance (in ohm)\n",
      "RL = 1.0 * 10**3                  #Load resistance (in ohm)\n",
      "a = 4.0                           #Turn's ratio\n",
      "beta1 = beta2 = 50.0              #Common emitter current gain\n",
      "VBE = 0.7                         #Emitter-to-base voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "IE = VCC/ (RE + RB/beta1)         #Emitter current (in Ampere)\n",
      "r1e = 25.0 / IE * 10**-3          #a.c. emitter diode resistance (in ohm)\n",
      "Ri1 = RB*beta1*r1e/(RB+beta1*r1e) #Input resistance of first stage (in ohm)\n",
      "Ri2 = RB*beta2*r1e/(RB+beta2*r1e) #Input resistance of Second stage (in ohm)\n",
      "R1i2 = a**2 * Ri2                 #Input resistance of the second stage transformed to primary side (in ohm)\n",
      "Ro1 = R1i2                        #Output resistance of second stage (in ohm)\n",
      "R1o2 = a**2 * RL                  #Output resistance of the second stage transformed to the primary side (in ohm)   \n",
      "Av1 = Ro1/r1e                     #Voltage gain of first stage\n",
      "Av2 = R1o2/r1e                    #Voltage gain of second stage\n",
      "Av = Av1 * Av2                    #Overall voltage gain\n",
      "Gv = 20 * math.log10(Av)               #Overall voltage gain (in decibels) \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Voltage gain of first stage is \",round(Av1,1),\".\\nVoltage gain of second stage is \",round(Av2,1),\".\\nOverall voltage gain is \",round(Av),\".\\nOverall voltage gain in decibels is \",round(Gv),\" dB.\"\n",
      "\n",
      "#Slight variation due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage gain of first stage is  797.8 .\n",
        "Voltage gain of second stage is  615.4 .\n",
        "Overall voltage gain is  490950.0 .\n",
        "Overall voltage gain in decibels is  114.0  dB.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.6 , Page Number 672"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 12.0                         #Source voltage (in volts)\n",
      "R1 = 100.0 * 10**3                 #Resistance (in ohm)\n",
      "R2 = 20.0 * 10**3                  #Resistance (in ohm)\n",
      "R3 = 10.0 * 10**3                  #Resistance (in ohm)\n",
      "R4 = 2.0 * 10**3                   #Resistance (in ohm)\n",
      "R5 = 10.0 * 10**3                  #Resistance (in ohm)\n",
      "R6 = 2.0 * 10**3                   #Resistance (in ohm)\n",
      "beta1 = beta2 = 100.0              #Common emitter current gain\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Vth = VCC * R2 / (R1 + R2)         #Thevenin's voltage (in volts)\n",
      "IE1 = Vth / R4                     #Emitter curren1 (in Ampere)\n",
      "r1e = 25.0 / IE1 * 10**-3          #a.c. emitter diode resistance (in ohm) \n",
      "VR6 = VCC - IE1 * R3               #Voltage across resistance6 (in volts)\n",
      "IE2 = VR6 / R6                     #Emitter current2 (in Ampere)\n",
      "r1e2 = 25.0 / IE2 * 10**-3         #a.c. emitter diode resistance2 (in ohm)\n",
      "Ri2 = beta2*(r1e2 + R6)            #Input resistance of second stage (in ohm)\n",
      "Ro1 = R3 * Ri2 /(R3 + Ri2)         #Output resistance of first stage (in ohm)\n",
      "Ro2 = R5                           #Output resistance of second stage (in ohm)\n",
      "Av1 = Ro1/(r1e + R4)               #Voltage gain of first stage \n",
      "Av2 = Ro2/(r1e2 + R6)              #Voltage gain of second stage\n",
      "Av = Av1 * Av2                     #Overall voltage gain \n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Voltage gain of first stage is \",round(Av1,1),\".\\nVoltage gain of second stage is \",round(Av2,1),\".\\nOverall voltage gain is \",round(Av,2),\".\"\n",
      "\n",
      "#Calculation mistake in book about Ro1 , therefore slight variation in the answers."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage gain of first stage is  4.7 .\n",
        "Voltage gain of second stage is  4.9 .\n",
        "Overall voltage gain is  23.24 .\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.7 , Page Number 674"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                          #Source voltage (in volts)\n",
      "R1 = 800.0                          #Resistance (in ohm)\n",
      "R2 = 200.0                          #Resistance (in ohm)\n",
      "R3 = 600.0                          #Resistance (in ohm)\n",
      "R4 = 200.0                          #Resistance (in ohm)\n",
      "R5 = 100.0                          #Resistance (in ohm)\n",
      "R6 = 1000.0                         #Resistance (in ohm)\n",
      "beta1 = beta2 = 100.0               #Common emitter current gain\n",
      "VBE = 0.7                           #Emitter-to-base voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "VR2 = VCC * (R2 / (R1 + R2))        #Voltage across resistance2 (in volts)\n",
      "IE1 = (VR2 - VBE)/R2                #Emitter current of Q1 transistor (in Ampere)\n",
      "IC1 = IE1                           #Collector current of Q1 transistor (in Ampere)\n",
      "VC1 = VCC - IC1 * R3                #Voltage at the collector of Q1 transistor (in volts)\n",
      "VE1 = IE1 * R4                      #Voltage at the emitter of Q1 transistor (in volts)\n",
      "VCE1 = VC1 - VE1                    #Collector-to-emitter voltage of Q1 transistor (in volts)\n",
      "VE2 = VC1 - (-VBE)                  #Voltage at the emitter of Q2 transistor (in volts)\n",
      "IE2 = (VCC - VE2)/R6                #Emitter current of Q2 transistor (in Ampere)\n",
      "IC2 = IE2                           #Collector-current of Q2 transistor (in Ampere)\n",
      "VC2 = IC2 * R5                      #Voltage at the collector of Q2 transistor (in volts)\n",
      "VCE2 = VC2 - VE2                    #Collector-to-emitter voltage of Q2 transistor (in volts)\n",
      "\n",
      "r1e1 = 25.0 / IE1 * 10**-3          #a.c. emitter diode resistance of Q1 transistor (in ohm)\n",
      "r1e2 = 25.0 / IE2 * 10**-3          #a.c. emitter diode resistance of Q2 transistor (in ohm)\n",
      "Ri2 = beta2 * (r1e2 + R6)           #Input resistance of second stage (in ohm)\n",
      "Ro1 = R3 * Ri2 / (R3 + Ri2)         #Output resistance of first stage (in ohm)\n",
      "Av1 = Ro1 / (r1e1 + R4)             #Voltage gain of first stage\n",
      "Av2 = 1.0                           #Voltage gain of second stage         \n",
      "Av = Av1 * Av2                      #Overall voltage gain\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Emitter current of Q1 transistor is \",IE1 * 10**3,\" mA.\\nCollector current of Q1 transistor is \",IC1 * 10**3,\" mA.\\nEmitter current of Q2 transistor is \",IE2 * 10**3,\" mA.\\nCollecotr-current of Q2 transistor is \",IC2 * 10**3,\" mA.\"\n",
      "print \"Collector-to-emitter voltage of Q1 transistor is \",VCE1,\" v.\\nCollector-to-emitter voltage of Q2 transistor is \",VCE2,\".\"\n",
      "print \"Overall voltage gain is \",round(Av,2),\".\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Emitter current of Q1 transistor is  6.5  mA.\n",
        "Collector current of Q1 transistor is  6.5  mA.\n",
        "Emitter current of Q2 transistor is  3.2  mA.\n",
        "Collecotr-current of Q2 transistor is  3.2  mA.\n",
        "Collector-to-emitter voltage of Q1 transistor is  4.8  v.\n",
        "Collector-to-emitter voltage of Q2 transistor is  -6.48 .\n",
        "Overall voltage gain is  2.93 .\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 26.8 , Page Number 679"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variables\n",
      "\n",
      "VCC = 10.0                        #Source voltage (in volts)\n",
      "RE = 1.5 * 10**3                  #Emitter resistance (in ohm)\n",
      "R1 = 30.0 * 10**3                 #Resistance (in ohm)\n",
      "R2 = 20.0 * 10**3                 #Resistance (in ohm)\n",
      "beta1 = 150.0                     #Common emitter current gain\n",
      "beta2 = 100.0                     #Common emitter current gain\n",
      "VBE = 0.7                         #Emitter-to-base voltage (in volts)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "Ai = beta1 * beta2                #Overall current gain of transistor\n",
      "VR2 = VCC * R2/(R1 + R2)          #Voltage across resistor2 (in volts)\n",
      "VB2 = VR2 - VBE                   #Voltage at the base of Q2 (in volts)\n",
      "VE2 = VB2 - VBE                   #Voltage at the emitter of Q2 (in volts)\n",
      "IE2 = VE2 / RE                    #Emitter current of Q2 (in Ampere)\n",
      "r1e2 = 25.0/IE2 * 10**-3          #a.c. emitter diode resistance of Q2 (in ohm)\n",
      "IB2 = IE2 / beta2                 #Base current of Q2 (in Ampere)\n",
      "IE1 = IB2                         #Emitter current of Q2\n",
      "r1e1 = 25.0/IE1 * 10**-3          #a.c. emitter diode resistance of Q1 (in ohm)   \n",
      "Ri1 = R1 * R2/(R1 + R2)           #Total input resistance (in ohm)\n",
      "Av = RE/(r1e1/beta2 + r1e2 + RE)  #Overall voltage gain\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The overall current gain is \",Ai,\".\"\n",
      "print \"The a.c. emitter diode resistance of Q1 transistor is \",round(r1e1,1),\" ohm.\\nThe a.c. emitter diode resistance of Q2 transistor is \",round(r1e2,2),\" ohm.\"\n",
      "print \"Total input resistance is \",Ri1 * 10**-3,\" kilo-ohm.\"\n",
      "print \"Overall voltage gain is \",round(Av,2),\".\"\n",
      "\n",
      "#Slight variation due to higher precision."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The overall current gain is  15000.0 .\n",
        "The a.c. emitter diode resistance of Q1 transistor is  1442.3  ohm.\n",
        "The a.c. emitter diode resistance of Q2 transistor is  14.42  ohm.\n",
        "Total input resistance is  12.0  kilo-ohm.\n",
        "Overall voltage gain is  0.98 .\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}