1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
|
{
"metadata": {
"name": "",
"signature": "sha256:00168ce8e6485ed62b7ab93f835949895122e8d417f4d6143363c166514fa2f2"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Chapter15-Atomic Nucleus And Nuclear Energy"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg-pg427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.1\n",
"##calculation of binding energy per nucleon\n",
"\n",
"##given values\n",
"Mp=1.00814;##mass of proton in amu\n",
"Mn=1.008665;##mass of nucleon in amu\n",
"M=7.01822;##mass of Lithium nucleus in amu\n",
"amu=931.;##amu in MeV\n",
"n=7-3;##no of neutrons in lithium nucleus\n",
"\n",
"##calculation\n",
"ET=(3*Mp+4*Mn-M)*amu;##total binding energy in MeV\n",
"E=ET/7.;##7 1s the mass number\n",
"print'%s %.2f %s'%('Binding energy per nucleon in MeV is',E,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Binding energy per nucleon in MeV is 5.43 \n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.2\n",
"##calculation of energy \n",
"\n",
"##given values\n",
"M1=15.00001;##atomic mass of N15 in amu\n",
"M2=15.0030;##atomic mass of O15 in amu\n",
"M3=15.9949;##atomic mass of O16 in amu\n",
"amu=931.4;##amu in MeV\n",
"mp=1.0072766;##restmass of proton\n",
"mn=1.0086654;##restmass of neutron\n",
"\n",
"##calculation\n",
"Q1=(M3-mp-M1)*amu;\n",
"print'%s %.2f %s'%('energy required to remove one proton from O16 is',Q1,'');\n",
"Q2=(M3-mn-M2)*amu;\n",
"print'%s %.2f %s'%('energy required to remove one neutron from O16 is',Q2,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"energy required to remove one proton from O16 is -11.54 \n",
"energy required to remove one neutron from O16 is -15.62 \n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg428"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.3\n",
"##calculation of binding energy \n",
"\n",
"##given values\n",
"Mp=1.00758;##mass of proton in amu\n",
"Mn=1.00897;##mass of nucleon in amu\n",
"M=4.0028;##mass of Helium nucleus in amu\n",
"amu=931.4;##amu in MeV\n",
"\n",
"##calculation\n",
"E1=(2*Mp+2*Mn-M)*amu;##total binding energy\n",
"print'%s %.2f %s'%('Binding energy in MeV is',E1,'');\n",
"E2=E1*10**6*1.6*10**-19;\n",
"print'%s %.3e %s'%('binding energy in Joule is',E2,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Binding energy in MeV is 28.22 \n",
"binding energy in Joule is 4.515e-12 \n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg435"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.4\n",
"##calculation of amount of unchanged material\n",
"\n",
"##given values\n",
"T=2;##half life in years\n",
"k=.6931/T;##decay constant\n",
"M=4.0028;##mass of Helium nucleus in amu\n",
"amu=931.4;##amu in MeV\n",
"No=1.;##initial amount in g\n",
"\n",
"##calculation\n",
"N=No*(math.e**(-k*2*T));\n",
"print'%s %.2f %s'%('amount of material remaining unchanged after four years(in gram) is',N,'');\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"amount of material remaining unchanged after four years(in gram) is 0.25 \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg435"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.5\n",
"##calculation of amount of halflife\n",
"\n",
"##given values\n",
"t=5.;##time period in years\n",
"amu=931.4;##amu in MeV\n",
"No=5.;##initial amount in g\n",
"N=5.-(10.5*10**-3);##amount present after 5 years\n",
"\n",
"\n",
"##calculation\n",
"k=math.log(N/No)/t;##decay constant\n",
"T=-.693/k;\n",
"print'%s %.2f %s'%('halflife in years is',T,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"halflife in years is 1648.27 \n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg435"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.6\n",
"##calculation of activity\n",
"\n",
"##given values\n",
"t=28.;##half life in years\n",
"m=10**-3;##mass of sample\n",
"M=90.;##atomic mass of strontium\n",
"NA=6.02*10**26;##avogadro's number\n",
"\n",
"\n",
"##calculation\n",
"n=m*NA/M;##no of nuclei in 1 mg sample\n",
"k=.693/(t*365*24.*60.*60.);##decay constant\n",
"A=k*n;\n",
"print'%s %.3e %s'%('activity of sample(in disintegrations per second) is',A,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"activity of sample(in disintegrations per second) is 5.250e+12 \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg439"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.7\n",
"##calculation of age of mineral\n",
"\n",
"##given values\n",
"t=4.5*10**9.;##half life in years\n",
"M1=238.;##atomic mass of Uranium in g\n",
"m=.093;##mass of lead in 1 g of uranium in g\n",
"NA=6.02*10**26;##avogadro's number\n",
"M2=206.;##atomic mass of lead in g\n",
"\n",
"##calculation\n",
"n=NA/M1;##no of nuclei in 1 g of uranium sample\n",
"n1=m*NA/M2;##no of nuclei in m mass of lead\n",
"c=n1/n;\n",
"k=.693/t;##decay constant\n",
"T=(1/k)*math.log(1+c);\n",
"print'%s %.3e %s'%('age of mineral in years is',T,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"age of mineral in years is 6.627e+08 \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg440"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.8\n",
"##calculation of age of wooden piece\n",
"\n",
"##given values\n",
"t=5730.;##half life of C14 in years\n",
"M1=50.;##mass of wooden piece in g\n",
"A1=320.;##activity of wooden piece (disintegration per minute per g)\n",
"A2=12.;##activity of living tree\n",
"\n",
"##calculation\n",
"k=.693/t;##decay constant\n",
"A=A1/M1;##activity after death\n",
"\n",
"T=(1/k)*math.log(A2/A);\n",
"print'%s %.2f %s'%('age of mineral in years is',T,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"age of mineral in years is 5197.59 \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg443"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.9\n",
"##calculation of energy released\n",
"\n",
"##given values\n",
"M1=10.016125;##atomic mass of Boron in amu\n",
"M2=13.007440;##atomic mass of C13 in amu\n",
"M3=4.003874;##atomic mass of Helium in amu\n",
"mp=1.008146;##mass of proton in amu\n",
"amu=931.;##amu in MeV\n",
"\n",
"##calculation\n",
"Q=(M1+M3-(M2+mp))*amu;##total binding energy in M\n",
"print'%s %.2f %s'%('Binding energy per nucleon in MeV is',Q,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Binding energy per nucleon in MeV is 4.11 \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg444"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.10\n",
"##calculation of crosssection\n",
"\n",
"##given values\n",
"t=.01*10**-3;##thickness in m\n",
"n=10**13.;##no of protons bombarding target per s\n",
"NA=6.02*10**26.;##avogadro's number\n",
"M=7.;##atomic mass of lithium in kg\n",
"d=500.;##density of lithium in kg/m**3\n",
"n0=10**8.;##no of neutrons produced per s\n",
"##calculation\n",
"n1=d*NA/M;##no of target nuclei per unit volume\n",
"n2=n1*t;##no of target nuclei per area\n",
"A=n0/(n*n2);\n",
"print'%s %.3e %s'%('crosssection(in m^2) for this reaction is',A,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"crosssection(in m^2) for this reaction is 2.326e-29 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex11-pg450"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.11\n",
"##calculation of final energy \n",
"\n",
"##given values\n",
"B=.4;##max magnetic field in Wb/m**2\n",
"c=3*10**8.;\n",
"e=1.6*10**-19.;\n",
"d=1.52;##diametre in m\n",
"r=d/2.;\n",
"\n",
"##calculation\n",
"E=B*e*r*c;##E=pc,p=mv=Ber\n",
"print'%s %.3e %s'%('final energy of e(in J) is',E,'');\n",
"E1=(E/e)/10**6;\n",
"print'%s %.2f %s'%('final energy of e (in MeV) is',E1,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"final energy of e(in J) is 1.459e-11 \n",
"final energy of e (in MeV) is 91.20 \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex12-pg459"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.12\n",
"##calculation of amount of fuel\n",
"\n",
"##given values\n",
"P=100*10**6.;##power required by city\n",
"M=235.;##atomic mass of Uranium in g\n",
"e=20/100.;##conversion efficiency\n",
"NA=6.02*10**26.;##avogadros number\n",
"E=200*10**6*1.6*10**-19;##energy released per fission\n",
"t=8.64*10**4.;##day in seconds\n",
"\n",
"\n",
"##calculation\n",
"E1=P*t;##energy requirement\n",
"m=E1*M/(NA*e*E);##no of nuclei N=NA*m/M,energy released by m kg is N*E,energy requirement=e*N*E\n",
"print'%s %.2f %s'%('amount of fuel(in kg) required is',m,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"amount of fuel(in kg) required is 0.53 \n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex13-pg459"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.13\n",
"##calculation of power output\n",
"\n",
"##given values\n",
"M=235.;##atomic mass of Uranium in kg\n",
"e=5/100.;##reactor efficiency\n",
"m=25/1000.;##amount of uranium consumed per day in kg\n",
"E=200*10**6*1.6*10**-19;##energy released per fission\n",
"t=8.64*10**4.;##day in seconds\n",
"NA=6.02*10**26.;##avogadros number\n",
"\n",
"##calculation\n",
"n=NA*m/M;##no of nuclei in 25g\n",
"E1=n*E;##energy produced by n nuclei\n",
"E2=E1*e;##energy converted to power\n",
"P=E2/t;##power output in Watt\n",
"print'%s %.2f %s'%('power output in MW is',P/10**6,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power output in MW is 1.19 \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex14-pg460"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.14\n",
"##calculation of power developed\n",
"\n",
"##given values\n",
"M=235.;##atomic mass of Uranium in kg\n",
"m=20.4;##amount of uranium consumed per day in kg\n",
"E=200*10**6*1.6*10**-19;##energy released per fission\n",
"t=3600*1000.;##time of operation\n",
"NA=6.02*10**26;##avogadros number\n",
"\n",
"##calculation\n",
"n=NA*m/M;##no of nuclei in 20.4kg\n",
"E1=n*E;##energy produced by n nuclei\n",
"P=E1/t;##in Watt\n",
"print'%s %.2f %s'%('power developed in MW is',P/10**6,'');"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"power developed in MW is 464.52 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex15-pg464"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"##Example 15.15\n",
"##calculation of amount of dueterium consumed\n",
"\n",
"##given values\n",
"M1=2.01478;##atomic mass of Hydrogen in amu\n",
"M2=4.00388;##atomic mass of Helium in amu\n",
"amu=931.;##amu in MeV\n",
"e=30/100.;##efficiency\n",
"P=50*10**6.;##output power\n",
"NA=6.026*10**26.;##avogadro number\n",
"t=8.64*10**4.;##seconds in a day\n",
"\n",
"##calculation\n",
"Q=(2*M1-M2)*amu;##energy released in a D-D reaction in MeV\n",
"O=Q*e*10**6/2.;##actual output per dueterium atom in eV\n",
"n=P/(O*1.6*10**-19);##no of D atoms required\n",
"m=n*M1/NA;##equivalent mass of D required per s\n",
"X=m*t;\n",
"\n",
"print'%s %.2f %s'%('Deuterium requirement per day in kg is',X,'');\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Deuterium requirement per day in kg is 0.03 \n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|