{
 "metadata": {
  "name": "",
  "signature": "sha256:04b8728a2a112ab03efb0f888eacfe0c6847d92d7043fbf038fc0d7708b1bf9e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter1-Introduction of Electronic Device"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.1\n",
      "#calcualte fusing current for given values\n",
      "import math\n",
      "print(\"I = K(d^1.5)\") ##formula used for fusing current\n",
      "d=0.0031\n",
      "print\"%s %.3f %s\"%(\"d = \",d,\"inches\") ##initializing values of diameter\n",
      "I1=10244*(d**1.5);\n",
      "I2=7585*(d**1.5);\n",
      "I3=5320*(d**1.5); \n",
      "I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d^1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d^1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d^1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d^1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d^1.5) = \",I5,\"Amp.\")\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "I = K(d^1.5)\n",
        "d =  0.003 inches\n",
        "for Copper, I = 10244*(d^1.5) =  1.77 Amp.\n",
        "for Aluminum, I = 7585*(d^1.5) =  1.31 Amp.\n",
        "for Silver, I = 5320*(d^1.5) =  0.92 Amp.\n",
        "for Iron, I = 3148*(d^1.5) =  0.54 Amp.\n",
        "for Tin, I = 1642*(d^1.5) =  0.28 Amp.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg34"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.2\n",
      "#calculate fusing current for given values\n",
      "print(\"fusing current, I = K(d**1.5) Amp.\")##formula used for fusing current\n",
      "d=0.0201\n",
      "print\"%s %.2f %s\"%(\"d = \",d,\"inches\") ##initializing value of diameter\n",
      "I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d**1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d**1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d**1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d**1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d**1.5) = \",I5,\"Amp.\")\n",
      "\n",
      "\n",
      "## note : calculation for fusing current of Iron is wrong.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "fusing current, I = K(d**1.5) Amp.\n",
        "d =  0.02 inches\n",
        "for Copper, I = 10244*(d**1.5) =  29.19 Amp.\n",
        "for Aluminum, I = 7585*(d**1.5) =  21.61 Amp.\n",
        "for Silver, I = 5320*(d**1.5) =  15.16 Amp.\n",
        "for Iron, I = 3148*(d**1.5) =  8.97 Amp.\n",
        "for Tin, I = 1642*(d**1.5) =  4.68 Amp.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex3-pg35"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.3\n",
      "#calculate for fusing current in all four cases\n",
      "import math\n",
      "print(\"fusing current, I = K(d**1.5) Amp.\") ##formula used for fusing current\n",
      "print(\"(a)\") \n",
      "d=0.0159\n",
      "print\"%s %.2f %s\"%(\"d = \",d,\"inches\") ##initializing value of diameter\n",
      "I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d**1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d**1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d**1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d**1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d**1.5) = \",I5,\"Amp.\")\n",
      "\n",
      "\n",
      "print(\"(b)\")\n",
      "d=0.0063\n",
      "print\"%s %.2f %s\"%(\"d = \",d,\"inches\") ##initializing value of diameter\n",
      "I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d**1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d**1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d**1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d**1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d**1.5) = \",I5,\"Amp.\")\n",
      "\n",
      "\n",
      "print(\"(c)\")\n",
      "d=0.0403\n",
      "print\"%s %.2f %s\"%(\"d = \",d,\"inches\") ##initializing value of diameter\n",
      "I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d**1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d**1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d**1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d**1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d**1.5) = \",I5,\"Amp.\")\n",
      "\n",
      "\n",
      "print(\"(d)\")\n",
      "d=0.0452\n",
      "print\"%s %.2f %s\"%(\"d = \",d,\"inches\") ##initializing value of diameter\n",
      "I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d**1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d**1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d**1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d**1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d**1.5) = \",I5,\"Amp.\")\n",
      "\n",
      "\n",
      "print(\"(e)\")\n",
      "d=0.0508\n",
      "print\"%s %.2f %s\"%(\"d = \",d,\"inches\") ##initializing value of diameter\n",
      "I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d**1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d**1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d**1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d**1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d**1.5) = \",I5,\"Amp.\")\n",
      "\n",
      "\n",
      "print(\"(f)\")\n",
      "d=0.162\n",
      "print\"%s %.2f %s\"%(\"d = \",d,\"inches\") ##initializing value of diameter\n",
      "I1=10244*(d**1.5);I2=7585*(d**1.5); I3=5320*(d**1.5); I4=3148*(d**1.5); I5=1642*(d**1.5)  ##calculation for fusing current\n",
      "print\"%s %.2f %s\"%(\"for Copper, I = 10244*(d**1.5) = \",I1,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Aluminum, I = 7585*(d**1.5) = \",I2,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Silver, I = 5320*(d**1.5) = \",I3,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Iron, I = 3148*(d**1.5) = \",I4,\"Amp.\")\n",
      "print\"%s %.2f %s\"%(\"for Tin, I = 1642*(d**1.5) = \",I5,\"Amp.\")\n",
      "\n",
      "\n",
      "\n",
      "## note : in part (e) ... calculation for fusing current of silver is wrong.\n",
      "## note : in part (f) ... calculation for fusing current of Iron is wrong.\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "fusing current, I = K(d**1.5) Amp.\n",
        "(a)\n",
        "d =  0.02 inches\n",
        "for Copper, I = 10244*(d**1.5) =  20.54 Amp.\n",
        "for Aluminum, I = 7585*(d**1.5) =  15.21 Amp.\n",
        "for Silver, I = 5320*(d**1.5) =  10.67 Amp.\n",
        "for Iron, I = 3148*(d**1.5) =  6.31 Amp.\n",
        "for Tin, I = 1642*(d**1.5) =  3.29 Amp.\n",
        "(b)\n",
        "d =  0.01 inches\n",
        "for Copper, I = 10244*(d**1.5) =  5.12 Amp.\n",
        "for Aluminum, I = 7585*(d**1.5) =  3.79 Amp.\n",
        "for Silver, I = 5320*(d**1.5) =  2.66 Amp.\n",
        "for Iron, I = 3148*(d**1.5) =  1.57 Amp.\n",
        "for Tin, I = 1642*(d**1.5) =  0.82 Amp.\n",
        "(c)\n",
        "d =  0.04 inches\n",
        "for Copper, I = 10244*(d**1.5) =  82.88 Amp.\n",
        "for Aluminum, I = 7585*(d**1.5) =  61.36 Amp.\n",
        "for Silver, I = 5320*(d**1.5) =  43.04 Amp.\n",
        "for Iron, I = 3148*(d**1.5) =  25.47 Amp.\n",
        "for Tin, I = 1642*(d**1.5) =  13.28 Amp.\n",
        "(d)\n",
        "d =  0.05 inches\n",
        "for Copper, I = 10244*(d**1.5) =  98.44 Amp.\n",
        "for Aluminum, I = 7585*(d**1.5) =  72.89 Amp.\n",
        "for Silver, I = 5320*(d**1.5) =  51.12 Amp.\n",
        "for Iron, I = 3148*(d**1.5) =  30.25 Amp.\n",
        "for Tin, I = 1642*(d**1.5) =  15.78 Amp.\n",
        "(e)\n",
        "d =  0.05 inches\n",
        "for Copper, I = 10244*(d**1.5) =  117.29 Amp.\n",
        "for Aluminum, I = 7585*(d**1.5) =  86.85 Amp.\n",
        "for Silver, I = 5320*(d**1.5) =  60.91 Amp.\n",
        "for Iron, I = 3148*(d**1.5) =  36.04 Amp.\n",
        "for Tin, I = 1642*(d**1.5) =  18.80 Amp.\n",
        "(f)\n",
        "d =  0.16 inches\n",
        "for Copper, I = 10244*(d**1.5) =  667.95 Amp.\n",
        "for Aluminum, I = 7585*(d**1.5) =  494.57 Amp.\n",
        "for Silver, I = 5320*(d**1.5) =  346.88 Amp.\n",
        "for Iron, I = 3148*(d**1.5) =  205.26 Amp.\n",
        "for Tin, I = 1642*(d**1.5) =  107.06 Amp.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.4\n",
      "#calculate resistance for given resistivity\n",
      "import math\n",
      "A=0.5189*10**-6##wire cross sectional area\n",
      "rho=1.725*10**-8##resistivity\n",
      "l=100 ##wire length\n",
      "print\"%s %.3e %s\"%(\"A =\",A,\"merer square\") \n",
      "print\"%s %.2e %s\"%(\"rho =\",rho,\"ohm-m\")\n",
      "print\"%s %.2f %s\"%(\"l =\",l,\"m\")\n",
      "print\"%s %.2f %s\"%(\"R = rho*l/A = \",rho*l/A,\"ohm\") ##resistance\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "A = 5.189e-07 merer square\n",
        "rho = 1.73e-08 ohm-m\n",
        "l = 100.00 m\n",
        "R = rho*l/A =  3.32 ohm\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg38"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.5\n",
      "#calculate resistance wire\n",
      "import  math\n",
      "A=0.2588*10**-6##wire cross-sectional area\n",
      "rho=1.725*10**-8##resistivity\n",
      "l=100 ##wire length\n",
      "print\"%s %.2e %s\"%(\"A =\",A,\"merer square\")\n",
      "print\"%s %.2e %s\"%(\"rho =\",rho,\"ohm-m\")\n",
      "print\"%s %.2f %s\"%(\"l =\",l,\"m\")\n",
      "print\"%s %.2f %s\"%(\"R = rho*l/A = \",rho*l/A,\"ohm\") ##resistance of wire\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "A = 2.59e-07 merer square\n",
        "rho = 1.73e-08 ohm-m\n",
        "l = 100.00 m\n",
        "R = rho*l/A =  6.67 ohm\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg39"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.6\n",
      "#calculate resistance at temperature at T2\n",
      "R1 = 14##resistance at temperature T1 \n",
      "alpha=0.005\n",
      "T1=20;##initial temperature\n",
      "T2=120 ##final temperature\n",
      "print\"%s %.2f %s %.2f %s %.2f %s%.2f %s \"%(\"R1 = \",R1, \"ohm\"and\" alpha = \",alpha,\"\"and \" T1 = \",T1,\"degreeC\"and \"T2 = \",T2,\"degreeC\")\n",
      "print\"%s %.2f %s\"%(\"R2 = R1(1+(alpha*(T1-T2))) = \",R1*(1+(alpha*(T2-T1))),\"ohm\") ##resistance at temperature T2\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "R1 =  14.00  alpha =  0.01  20.00 T2 = 120.00 degreeC \n",
        "R2 = R1(1+(alpha*(T1-T2))) =  21.00 ohm\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex7-pg40"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##EX1.7\n",
      "#calculate force of electron charge\n",
      "import math\n",
      "Ex=3;Ey=4;Ez=2##electric field\n",
      "e=1.6*10**-19 ##electorn charge\n",
      "print(\"E = 3ax + 4ay + 2az k V/m\")\n",
      "print(\"e = 1.6*10**-19 C\")\n",
      "print\"%s %.2e %s %.2e %s %.2e %s \"%(\" F=eE = \",Ex*e*1000,\"ax + \",Ey*e*1000,\"ay + \",Ez*e*1000,\"az N\") ##force\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "E = 3ax + 4ay + 2az k V/m\n",
        "e = 1.6*10**-19 C\n",
        " F=eE =  4.80e-16 ax +  6.40e-16 ay +  3.20e-16 az N \n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex8-pg40"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.8\n",
      "#calculate elctric field\n",
      "import math\n",
      "F=0.1*10**-12##force applied\n",
      "e = 1.6*10**-19##electron charge\n",
      "print\"%s %.2e %s  %.2e %s \"%(\"F= \",F,\"N \"and \" e = \",e,\"C\")\n",
      "print\"%s %.2f %s\"%(\"E = F/e =\",F/e,\"V/m\")##electric field\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "F=  1.00e-13  e =   1.60e-19 C \n",
        "E = F/e = 625000.00 V/m\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex9-pg41"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.9\n",
      "#calculate charge of electron\n",
      "import math\n",
      "F = 3*(10**-12) ##force applied\n",
      "E = 5*(10**-6)  ##electric field\n",
      "print\"%s %.2e %s\"%(\"F = \",F,\"N\")\n",
      "print\"%s %.2e %s\"%(\"E = \",E,\"V/m\")\n",
      "print\"%s %.2e %s\"%(\"Q= F/E = \",F/E,\"C\") ##chage\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "F =  3.00e-12 N\n",
        "E =  5.00e-06 V/m\n",
        "Q= F/E =  6.00e-07 C\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex10-pg44"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.10\n",
      "#calculate force \n",
      "import math\n",
      "B = 2*10**-6 ##magnetic flux density\n",
      "V = 4*10**6  ##electron velocity\n",
      "e= 1.6*10**-19##elcetron charge\n",
      "print\"%s %.2e %s\"%(\"B =\",B,\"ax wb/m.sq\")\n",
      "print\"%s %.2f %s\"%(\"V =\",V,\"az m/s\")\n",
      "print\"%s %.3e %s\"%(\"e = \",e, \"C\")\n",
      "print\"%s %.2e %s\"%(\"F = e[VxB] =\",e*V*B,\"ay N\")##force\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "B = 2.00e-06 ax wb/m.sq\n",
        "V = 4000000.00 az m/s\n",
        "e =  1.600e-19 C\n",
        "F = e[VxB] = 1.28e-18 ay N\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Ex11-pg44"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##Ex1.11\n",
      "#calculate force on electron due to field\n",
      "import math\n",
      "Hx = 1*10**-3  ##magnetic field in x-axis\n",
      "Hy = 2*10**-3  ##magnetic field in y-axis\n",
      "V = (4*10**6)  ##electron velocity\n",
      "micro_not=(4*math.pi*(10**-7)) ##permitivity in vaccum\n",
      "e=1.6*10**-19  ##charge of electorn\n",
      "print\"%s %.2e %s %.2e %s \"%(\" H = \",Hx,\"ax  + \",Hy,\"ay A/m\")\n",
      "print\"%s %.2f %s\"%(\"V = \",V,\"ay m/s\")\n",
      "Bx = micro_not*Hx; By = micro_not*Hy ##magnetic flux density\n",
      "print\"%s %.2e %s %.2e %s \"%(\"B = micro_not*H = \",Bx,\"ax + \",By,\"ay wb/m.sq\")\n",
      "print\"%s %.2e %s \"%(\"F = e[VxB] = \",e*V*Bx,\"az N\") ##force on electron due to field\n",
      "\n",
      "\n",
      "## note : there is a misprint in the textbook for the above problem\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " H =  1.00e-03 ax  +  2.00e-03 ay A/m \n",
        "V =  4000000.00 ay m/s\n",
        "B = micro_not*H =  1.26e-09 ax +  2.51e-09 ay wb/m.sq \n",
        "F = e[VxB] =  8.04e-22 az N \n"
       ]
      }
     ],
     "prompt_number": 11
    }
   ],
   "metadata": {}
  }
 ]
}