{ "metadata": { "name": "", "signature": "sha256:cd92732b89aba9dec0c4f42de79fa75bac0a4c551a65b1e08ee3d7196bca88ee" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter1-Basic Circuit Concepts" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Basic Circuit Concepts\n", "##page no-1.9\n", "##example1.1\n", "print(\"Current through 15Ohm resistor is given by:\");\n", "print(\"I1=30/15\");\n", "I1=30/15\n", "print\"%s %.2f %s \"%(\"current through 15Ohm resistor = \",I1,\" Ampere\")\n", "print(\"Current through 5Ohm resistor is given by:\")\n", "print(\"I2=5+2\");\n", "I2=5+2\n", "print\"%s %.2f %s \"%(\"current through 5ohm resistor = \",I2,\" Ampere\")\n", "print(\"R=100-30-5*I2/I1\");\n", "R=(100-30-5*I2)/I1\n", "print\"%s %.2f %s \"%(\"R = \",R,\" Ohm\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current through 15Ohm resistor is given by:\n", "I1=30/15\n", "current through 15Ohm resistor = 2.00 Ampere \n", "Current through 5Ohm resistor is given by:\n", "I2=5+2\n", "current through 5ohm resistor = 7.00 Ampere \n", "R=100-30-5*I2/I1\n", "R = 17.00 Ohm \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Basic Circuit Concepts\n", "##page no-1.10\n", "##example1.2\n", "import math\n", "import numpy\n", "print(\"from the given fig:\")\n", "print(\"I2-I3=13\");\n", "print(\"-20*I1+8*I2=0\");\n", "print(\"-12*I1-16*I3=0\");\n", "##solving these equations in the matrix form\n", "A=numpy.matrix([[0, 1 ,-1],[-20, 8, 0],[-12 ,0 ,-16]])\n", "B=numpy.matrix([[13], [0] ,[0]])\n", "print(\"A=\")\n", "print[A]\n", "print(\"B=\")\n", "print[B]\n", "X=numpy.dot(numpy.linalg.inv(A),B)\n", "print(\"X=\")\n", "print[X]\n", "print(\"I1 = 4Ampere\")\n", "print(\"I2 = 10Ampere\")\n", "print(\"I3 = -3Ampere\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "from the given fig:\n", "I2-I3=13\n", "-20*I1+8*I2=0\n", "-12*I1-16*I3=0\n", "A=\n", "[matrix([[ 0, 1, -1],\n", " [-20, 8, 0],\n", " [-12, 0, -16]])]\n", "B=\n", "[matrix([[13],\n", " [ 0],\n", " [ 0]])]\n", "X=\n", "[matrix([[ 4.],\n", " [ 10.],\n", " [ -3.]])]\n", "I1 = 4Ampere\n", "I2 = 10Ampere\n", "I3 = -3Ampere\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Basic Circuit Concepts\n", "##pg no-1.11\n", "##example 1.3\n", "print(\"Iaf=x\")\n", "print(\"Ife=x-30\")\n", "print(\"Ied=x+40\")\n", "print(\"Idc=x-80\")\n", "print(\"Icb=x-20\")\n", "print(\"Iba=x-80\")\n", "print(\"Applying KVL to the closed path AFEDCBA:\")##Applying KVL to the path AFEDCBA\n", "print(\"x=4.1/0.1\")\n", "x=4.1/0.1;\n", "Iaf=x;\n", "print\"%s %.2f %s \"%(\"\\nIaf = \",Iaf,\" Ampere\");\n", "Ife=x-30.\n", "print\"%s %.2f %s \"%(\"\\nIfe = \",Ife,\" Ampere\");\n", "Ied=x+40.;\n", "print\"%s %.2f %s \"%(\"\\nIed = \",Ied,\" Ampere\");\n", "Idc=x-80;\n", "print\"%s %.2f %s \"%(\"\\nIdc = \",Idc,\" Ampere\");\n", "Icb=x-20.;\n", "print\"%s %.2f %s \"%(\"\\nIcb = \",Icb,\" Ampere\");\n", "Iba=x-80.;\n", "print\"%s %.2f %s \"%(\"\\nIba = \",Iba,\" Ampere\");" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Iaf=x\n", "Ife=x-30\n", "Ied=x+40\n", "Idc=x-80\n", "Icb=x-20\n", "Iba=x-80\n", "Applying KVL to the closed path AFEDCBA:\n", "x=4.1/0.1\n", "\n", "Iaf = 41.00 Ampere \n", "\n", "Ife = 11.00 Ampere \n", "\n", "Ied = 81.00 Ampere \n", "\n", "Idc = -39.00 Ampere \n", "\n", "Icb = 21.00 Ampere \n", "\n", "Iba = -39.00 Ampere \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Basic Circuit Concepts\n", "##pg no- 1.12\n", "##example 1.4\n", "import math\n", "import numpy\n", "print(\"Applying KVL to the closed path OBAO\");##Applying KVL to the closed path OBAO\n", "print(\"3*x-3*y=2\");\n", "print(\"Applying KVL to the closed path ABCA\");##Applying KVL to the closed path ABCA\n", "print(\"9*x+12*y=4\");\n", "a=numpy.matrix([[3, -3],[9, 12]]);\n", "b=([[2] ,[4]])\n", "print(\"a=\")\n", "print[a]\n", "print(\"b=\")\n", "print[b]\n", "X=numpy.dot(numpy.linalg.inv(a),b)\n", "\n", "print(X)\n", "print(\"x=0.5714286 Ampere\");\n", "print(\"y=-0.095238 Ampere\");\n", "print(\"Ioa=0.57A\")\n", "print(\"Iob=1-0.57\")\n", "Iob=1-0.57;\n", "print\"%s %.2f %s \"%(\"\\nIob = \",Iob,\" A\");\n", "print(\"Iab = 0.095\");\n", "Iac=0.57-0.095;\n", "print\"%s %.2f %s \"%(\"\\nIac =\",Iac,\" A\");\n", "print(\"Iab=1-0.57 + 0.095\")\n", "Iab=1-0.57 + 0.095;\n", "print\"%s %.2f %s \"%(\"\\nIob = \",Iab,\" A\") " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Applying KVL to the closed path OBAO\n", "3*x-3*y=2\n", "Applying KVL to the closed path ABCA\n", "9*x+12*y=4\n", "a=\n", "[matrix([[ 3, -3],\n", " [ 9, 12]])]\n", "b=\n", "[[[2], [4]]]\n", "[[ 0.57142857]\n", " [-0.0952381 ]]\n", "x=0.5714286 Ampere\n", "y=-0.095238 Ampere\n", "Ioa=0.57A\n", "Iob=1-0.57\n", "\n", "Iob = 0.43 A \n", "Iab = 0.095\n", "\n", "Iac = 0.47 A \n", "Iab=1-0.57 + 0.095\n", "\n", "Iob = 0.53 A \n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Basic Circuit Concepts\n", "##pg no-1.12\n", "##example 1.5\n", "I1=2./5.;\n", "print\"%s %.2f %s \"%(\"I1=2/5= \",I1,\" Ampere\")\n", "I2=4./8.;\n", "print\"%s %.2f %s \"%(\"\\nI2=4/8= \",I2,\" Ampere\")\n", "print(\"\\nPotential difference between points x and y = Vxy = Vx-Vy\")\n", "print(\"\\nWriting KVL equations for the path x to y\")##Writing KVL equation from x to y\n", "print(\"\\nVs+3*I1+4-3*I2-Vy=0\")\n", "print(\"\\nVs+3*(0.4) + 4- 3*(0.5) -Vy = 0\")\n", "print(\"\\nVs+3*I1+4-3*I2-Vy = 0\")\n", "print(\"\\nVx-Vy = -3.7\")\n", "print(\"\\nVxy = -3.7V\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "I1=2/5= 0.40 Ampere \n", "\n", "I2=4/8= 0.50 Ampere \n", "\n", "Potential difference between points x and y = Vxy = Vx-Vy\n", "\n", "Writing KVL equations for the path x to y\n", "\n", "Vs+3*I1+4-3*I2-Vy=0\n", "\n", "Vs+3*(0.4) + 4- 3*(0.5) -Vy = 0\n", "\n", "Vs+3*I1+4-3*I2-Vy = 0\n", "\n", "Vx-Vy = -3.7\n", "\n", "Vxy = -3.7V\n" ] } ], "prompt_number": 5 } ], "metadata": {} } ] }