{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3 Fundamentals of Fault Clearing and Switching Phenomena" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_1 pgno:24" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the transient current =A 1.56\n" ] } ], "source": [ "from math import pi,exp\n", "from math import atan,sin\n", "from math import sqrt\n", "R=10; \n", "L=0.1; \n", "f=50; \n", "w=2*pi*f; \n", "k=sqrt((R**2)+((w*L)**2));\n", "angle=atan(w*L/R);\n", "E=400 \n", "A=E*sin(angle)/k;\n", "i=A*exp((-R)*.02/L);\n", "i=round(i*100)/100;\n", "print\"the transient current =A\",i\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_2 pgno:26" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "current in amperes for part1=A\n", "4.1\n", "current in part 2& part 3= 0\n", "\n", "the DC component vanishes if e=V 141.4\n", "\n", "current at .5 cycles for t1=sec \n", "current in the problem = A 0.01 1.50368424845\n", "\n", "current at 1.5 cycles for t2=sec \n", "current in the problem = A 0.03 0.203501533662\n", "\n", "current at 5.5 cycles for t3=sec \n", "current in the problem = A 0.11 6.82671592646e-05\n", "the difference in result is due to erroneous value in textbook.\n" ] } ], "source": [ "from math import sqrt,sin,atan,pi,exp\n", "R=10; \n", "L=0.1; \n", "f=50; \n", "w=2*pi*f; \n", "k=sqrt((R**2)+((w*L)**2));\n", "angle=atan(w*L/R); \n", "E=100; \n", "Em=sqrt(2)*E; \n", "A=Em*sin(angle)/k;\n", "i1=A; \n", "Em=round(Em*10)/10;\n", "i1=round(i1*10)/10;\n", "print\"current in amperes for part1=A\\n\",i1\n", "print\"current in part 2& part 3= 0\\n\"\n", "print\"the DC component vanishes if e=V\",Em#the error is due to the erroneous values in the textbook\n", "\n", "t1=0.5*.02; \n", "i2=A*exp((-R)*t1/L);\n", "print\"\\ncurrent at .5 cycles for t1=sec \\ncurrent in the problem = A\",t1,i2\n", "t2=1.5*.02;\n", "i3=A*exp((-R)*t2/L);\n", "print\"\\ncurrent at 1.5 cycles for t2=sec \\ncurrent in the problem = A\",t2,i3\n", "t3=5.5*.02;\n", "i4=A*exp((-R)*t3/L);\n", "print\"\\ncurrent at 5.5 cycles for t3=sec \\ncurrent in the problem = A\",t3,i4\n", "\n", "\n", "print\"the difference in result is due to erroneous value in textbook.\"\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_3 pgno:28" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "frequency of oscillations=c/s 72400.0\n", "\n", "time of maximum restriking voltage=microsec 3.46\n", "\n", "maximum restriking voltage=V/microsecs 2430.0\n" ] } ], "source": [ "from math import sqrt,e,pi\n", "C=.003e-6 \n", "L=1.6e-3 \n", "y=sqrt(L*C);\n", "y=round(y*1e7)/1e7;\n", "f=(2*3.14*y)**-1; \n", "f=round(f/100)*100;\n", "i=7500;\n", "E=i*2*3.15*L*50;\n", "Em=1.414*E;\n", "Em=round(Em/10)*10\n", "t=y*pi/2;\n", "t=t*1e6;\n", "t=round(t*100)/100;\n", "e=Em/y;\n", "e=round((e)/1e6)*1e6;\n", "e=round(e/1e7)*1e7\n", "print\"frequency of oscillations=c/s\",f\n", "print\"\\ntime of maximum restriking voltage=microsec\",t\n", "print\"\\nmaximum restriking voltage=V/microsecs\",e/1e6\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_4 pgno:30" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "peak restriking voltage=kV 18.0\n", "\n", "frequency of oscillations=c/s 12637.7514913\n", "\n", "average rate of restriking voltage=kV/microsecs 0.455\n", "\n", "max restriking voltage=V/microsecs 714.0\n" ] } ], "source": [ "from math import pi,sqrt\n", "R=5 \n", "f=50\n", "L=R/(2*pi*f);\n", "V=11e3;\n", "Vph=11/sqrt(3);\n", "C=0.01e-6;\n", "y=sqrt(L*C);\n", "Em=sqrt(2)*Vph;\n", "ep=2*Em;\n", "ep=round(ep*10)/10;\n", "y=round(y*1e7)/1e7;\n", "t=y*pi;\n", "t=round(t*1e7)/1e7\n", "ea=ep/t;\n", "ea=round(ea/1e3)*1e3\n", "fn=(2*3.14*y)**-1;\n", "Em=round(Em)\n", "Emax=Em/y;\n", "Emax=round(Emax/1000)*1e3;\n", "print\"peak restriking voltage=kV\",ep\n", "print\"\\nfrequency of oscillations=c/s\",fn\n", "print\"\\naverage rate of restriking voltage=kV/microsecs\",ea/1e6\n", "print\"\\nmax restriking voltage=V/microsecs\",Emax/1e3\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_5 pgno:31" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average restriking voltage=V/microsecs 1220.0\n" ] } ], "source": [ "from math import pi,sqrt\n", "E=19.1*1e3;\n", "L=10*1e-3;\n", "C=.02*1e-6;\n", "Em=sqrt(2)*E;\n", "y=sqrt(L*C);\n", "t=pi*y*1e6;\n", "emax=2*Em;\n", "eavg=emax/t;\n", "eavg=round(eavg/10)*10\n", "print\"average restriking voltage=V/microsecs\",eavg\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_6 pgno:33" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average restriking voltage=kV/microsecs 4.8\n" ] } ], "source": [ "from math import e,sqrt,acos,sin\n", "V=78e3;\n", "Vph=V/sqrt(3);\n", "Em=2*Vph;\n", "pf=0.4;\n", "angle=acos(pf);\n", "k1=sin(angle); \n", "k1=round(k1*100)/100;\n", "k2=.951;\n", "k3=1;\n", "k=k1*k2*k3;\n", "k=round(k*1000)/1e3;\n", "E=k*Em;\n", "f=15000.; \n", "t=1/(2*f);\n", "t=round(t*1e6);\n", "eavg=2*E/t;\n", "eavg=round(eavg/100)*100;\n", "print\"average restriking voltage=kV/microsecs\",eavg/1e3\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_7 pgno:35" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "average voltage in volts=V/microsecs 1430.0\n", "frequency of oscillation =c/s 7143.0\n" ] } ], "source": [ "Em=100e3\n", "t=70e-6\n", "Ea=Em/t/1e6\n", "f=1/(2*t);\n", "Ea=round(Ea/10)*10;\n", "f=round(f);\n", "print\"average voltage in volts=V/microsecs\",Ea\n", "print\"frequency of oscillation =c/s\",f\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3_8 pgno:37" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "damping resistance in ohms=kohms 12.25\n" ] } ], "source": [ "from math import sqrt\n", "L=6; \n", "C=0.01e-6;\n", "i=10;\n", "v=i*sqrt(L/C);\n", "R=.5*v/i;\n", "R=round(R/10)*10;\n", "print\"damping resistance in ohms=kohms\",R/1e3\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }