{ "metadata": { "name": "", "signature": "sha256:e4425378c6999e9724676588b0097c2038f3833cd503390f3d7cf7bb3508521f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2-Introduction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "##input from given graph\n", "##calculation of initial accleration\n", "ia=18/4.\n", "## calculation of final accleration\n", "fa=-18/10.\n", "decel=-(fa)##calculation of deceleration\n", "##calculation of total distance covered\n", "d=0.5*(4.*18.)+(8.*18.)+0.5*(10.*18.)##area under velocity time graph\n", "##output\n", "print\"%s %.2f %s\"%(\"\\n the initial acceleration is \",ia,\" m/s^2\")\n", "print\"%s %.2f %s\"%(\"\\n the final acceleration is \",decel,\" m/s^2\")\n", "print\"%s %.2f %s\"%(\"\\n the distance covered is is \",d,\" m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " the initial acceleration is 4.50 m/s^2\n", "\n", " the final acceleration is 1.80 m/s^2\n", "\n", " the distance covered is is 270.00 m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "##input\n", "v=0. ##car stops => final velocity=0\n", "u=29. ##initial velocity\n", "t=11. ##time \n", "##calculation of acceleration\n", "a=(v-u)/t##eqn of uniformly accelerated body\n", "##calculating distance travelled during this period\n", "d=(v+u)*t*0.5##eqn of uniformly accelerated body\n", "##output\n", "print\"%s %.2f %s\"%(\"the accleration is \",a,\" ms^-2 \")\n", "print\"%s %.2f %s\"%(\"\\nthe distance travelled is \",d,\" m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the accleration is -2.64 ms^-2 \n", "\n", "the distance travelled is 159.50 m\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "##input\n", "v=120. ##velocity\n", "a=75 ##accleration\n", "##ca.lculation of time\n", "t=2.*v/(a*math.cos(45/57.3))##eqn of uniformly accelerated body\n", "##output\n", "print\"%s %.2f %s\"%(\"the time taken is \",t,\" s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the time taken is 4.53 s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "##input\n", "f1=50.\n", "f2=50.\n", "##calculation of net force\n", "f=f1+f2 ## the two forces act in same direction\n", "##output\n", "print\"%s %.2f %s\"%(\"the resultant force is \",f,\" N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the resultant force is 100.00 N\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "##input\n", "vc=25. ##velocity of car\n", "va=10. ##velocity of wind\n", "va1=15. ##velocity of wind westward\n", "##calculation\n", "v1=vc+va##resultant velocity for a tail of wind\n", "v2=vc-va##when wind blows westward at 10 m/s^resultant velocity \n", "v3=vc-va1##resultant velocity when wind blows westward at 15m/s^2\n", "##output\n", "print\"%s %.2f %s\"%(\"1. the resultant velocity of wind is \",v1,\" ms^-1 eastwards \")\n", "print\"%s %.2f %s\"%(\"\\n2. the resultant velocity of wind is \",v2,\" ms^-1 westwards \")\n", "print\"%s %.2f %s\"%(\"\\n3. the resultant velocity of wind is \",v3,\" ms^-1westwards \")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1. the resultant velocity of wind is 35.00 ms^-1 eastwards \n", "\n", "2. the resultant velocity of wind is 15.00 ms^-1 westwards \n", "\n", "3. the resultant velocity of wind is 10.00 ms^-1westwards \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex7-pg31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "v=30. ##velocity of speedboat\n", "vw=40. ##velocity of wind\n", "##calculation\n", "x=(30./40.)##angle between original velocity of boat and resultant velocity\n", "y=math.atan(x)*(57.3)##applying trigonometry\n", "b=90.+y##bearing of boat\n", "##output\n", "print\"%s %.2f %s\"%(\"the bearing of speedboat is \",b,\" deg\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the bearing of speedboat is 126.87 deg\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex8-pg32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#input\n", "f1=6. ##tension on string AB\n", "f2=6. ##tension on string BC\n", "##calculation of tension\n", "t=2.*f1*math.sin(55/57.3)## the resultant tension is the diagonal of rhombus formed\n", "##output\n", "print\"%s %.2f %s\"%(\"/n the resultant tension is \",t,\" N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "/n the resultant tension is 9.83 N\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex10-pg33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input magnitude of forces\n", "f1=40.\n", "f2=50.\n", "##calculation\n", "d=50**2+40**2+2.*50.*40.*math.cos(50./57.3)##finding the diagonal\n", "r=50**2+40**2+2.*50.*(40.)*math.cos(130./57.3)##reversing the side and finding diagonlprint\"%s %.2f %s\"%(\"the resultant is %3.3f\",d1)\n", "r1=math.sqrt(r)##resultant sum\n", "d1=math.sqrt(d)## resultant when smaller force is subtracted from larger\n", "##output\n", "print\"%s %.2f %s\"%(\"1. the resultant sum is \",d1,\" N\")\n", "print\"%s %.2f %s\"%(\"\\n 2. the resultant when smaller force is subtracted from larger is \",r1,\" N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1. the resultant sum is 81.68 N\n", "\n", " 2. the resultant when smaller force is subtracted from larger is 39.11 N\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex11-pg34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "v=380.##velocity\n", "##calculation\n", "vh=v*math.cos(60./57.3)##horizontal component\n", "vv=v*math.sin(60./57.3)##vertical component\n", "##output\n", "print\"%s %.2f %s\"%(\"the horizontal component is \",vh,\" ms**-1\")\n", "print\"%s %.2f %s\"%(\"\\nthe vertical component is \",vv,\" ms**-1\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the horizontal component is 190.03 ms**-1\n", "\n", "the vertical component is 329.07 ms**-1\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex12-pg34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "fc=50.##force applied by magnet\n", "x=90.-20. ##angle of force\n", "##calculation\n", "fb=fc*math.sin(70./57.3)##force due to b\n", "fa=fc*math.cos(70./57.3)##force due to a\n", "##output\n", "print\"%s %.2f %s\"%(\"the force due to b is \",fb,\" N\")\n", "print\"%s %.2f %s\"%(\"\\nthe force due to b is \",fa,\" N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the force due to b is 46.98 N\n", "\n", "the force due to b is 17.11 N\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex13-pg35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "m1=1.\n", "v1=25.\n", "m2=2.\n", "v2=0.\n", "##calculation\n", "v=(m1*v1)+(m2*v2)##applying princilpe of conservation of linear momentum\n", "v4=v/(m1+m2)\n", "##output\n", "print\"%s %.2f %s\"%(\"the velocity with which both will move is \",v4,\" ms^-1\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the velocity with which both will move is 8.33 ms^-1\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex14-pg35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "m1=1.##mass of object 1\n", "v1=25.##velocity of object 1\n", "m2=2.##mass of object 2\n", "v2=0.##body at rest,velocity =0\n", "v3=10.\n", "##caclulation\n", "u=((m1*v1)+(m2*v2)-(m2*v3))/2.##applying princilpe of conservation of linear momentum\n", "##output\n", "print\"%s %.2f %s\"%(\"\\n the value of u is \",-u,\" ms^-1\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " the value of u is -2.50 ms^-1\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex15-pg36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "m=2.##mass\n", "r=4.##radius\n", "v=6.##uniform speed\n", "##calculation\n", "w=v/r##angular velocity\n", "f=m*r*w*w##centripetal force\n", "##output\n", "print\"%s %.2f %s\"%(\"the angular velocity is \",w,\" rads^-1\")\n", "print\"%s %.2f %s\"%(\"\\n the centripetal force is \",f,\" N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the angular velocity is 1.50 rads^-1\n", "\n", " the centripetal force is 18.00 N\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16-pg37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "m=140.##mass\n", "v=8.##speed\n", "r=5.##radius\n", "g=9.8##acceleration due to gravity\n", "##calculation\n", "t=((m*v**2/5.)**2)+(140.*9.8)**2 ##applying parallelogram of vectors\n", "t1=math.sqrt(t)\n", "##output\n", "print\"%s %.2f %s\"%(\"the tension in arm is \",t1,\" N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the tension in arm is 2256.91 N\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex17-pg38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "v=15.##velocity\n", "m=70.##mass\n", "r=50.##radius\n", "##calculation\n", "x=v*v/(r*10.)##applying parallelogram of vectors,then for equilibrium\n", "y=math.atan(x)*57.3\n", "r1=(m*10.)/math.cos(y/57.3)\n", "##output\n", "print\"%s %.2f %s\"%(\"the inclination is \",y,\" deg\")\n", "print\"%s %.2f %s\"%(\"\\n the reaction is \",r1,\" N\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the inclination is 24.23 deg\n", "\n", " the reaction is 767.61 N\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex18-pg39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "r=5500.##radius\n", "g1=6.7*10**-11\n", "g=7##acceleration due to gravity\n", "##calculation of mean density\n", "p=3.*g/(4.*math.pi*r*10**3*g1)##mean density\n", "##output\n", "print\"%s %.2f %s\"%(\"the mean density of planet is \",p,\" kgm^-3\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the mean density of planet is 4534.94 kgm^-3\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex19-pg40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "m=5.*10**24##mass of earth\n", "g1=6.7*10**-11\n", "##calculation\n", "r=((6.7*10**-11.*5.*10**24*(3600.*24.)**2)/(4.*math.pi**2))**(1./3.)##orbit radius\n", "v=(2.*math.pi*r)/(3600.*24.)##linear velocity\n", "##output\n", "print\"%s %.2f %s\"%(\"the orbit radius is \",r,\"\")\n", "print\"%s %.2f %s\"%(\"\\n the linear velocity is \",v,\" ms^-1\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the orbit radius is 39863080.05 \n", "\n", " the linear velocity is 2898.92 ms^-1\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex20-pg41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "v=3.*10**5##orbit speed\n", "r=4.6*10**20##distance\n", "g1=6.7*10**-11\n", "##calculation of mass\n", "m=v*v*r/g1 ##Newtons law\n", "##output\n", "print\"%s %.2e %s\"%(\"the mass is \",m,\" kg\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the mass is 6.18e+41 kg\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex21-pg42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "v=0.6##speed\n", "m=0.3##mass\n", "##calculation\n", "e=0.75*m*v*v##total kinetic energy is kinetic energy+moment of inertia\n", "##output\n", "print\"%s %.2f %s\"%(\"the total kinetic energy is \",e,\" J\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the total kinetic energy is 0.08 J\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex22-pg43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "t1=34.\n", "u=0.##starts from rest\n", "x=3.##distance to move\n", "##calculation\n", "t=(3.*3./(10.*math.sin(t1)))**0.5##from law of conservation of energy\n", "##output\n", "print\"%s %.2f %s\"%(\"the time taken is \",t,\" s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the time taken is 1.30 s\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex23-pg43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "i1=53.##inertia when it spins with panels carrying solar cells\n", "i2=37.##inertia about axis of rotation\n", "##calculation\n", "r=i1/i2##law of conservation of angular momentum\n", "##output\n", "print\"%s %.2f %s\"%(\"the ratio of angular velocities is\",r,\"\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the ratio of angular velocities is 1.43 \n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex25-pg45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "f=9.##frequency\n", "x=0.##at midpoint of stroke x=0\n", "##calculation\n", "t=1./f\n", "a=-4.*math.pi**2*f**2*x##acceleration for shm\n", "v=2.*math.pi*f*0.05##velocity for shm\n", "a1=-4.*math.pi**2*9**2*0.05##acceleration at amplitude\n", "v1=0.##velocity at amplitude is 0\n", "##output\n", "print\"%s %.2f %s\"%(\"the period of oscillation is \",t,\" s^-1\")\n", "print\"%s %.2f %s\"%(\"\\n the velocity at midpoint of stroke is \",v,\" ms^-1\")\n", "print\"%s %.2f %s\"%(\"\\n the acceleration at midpoint of stroke is \",a,\" ms^-2\")\n", "\n", "print\"%s %.2f %s\"%(\"\\n the velocity at amplitude is \",v1,\" ms^-1\")\n", "print\"%s %.2f %s\"%(\"\\n the acceleration at amplitude is \",a1,\" ms^-2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the period of oscillation is 0.11 s^-1\n", "\n", " the velocity at midpoint of stroke is 2.83 ms^-1\n", "\n", " the acceleration at midpoint of stroke is -0.00 ms^-2\n", "\n", " the velocity at amplitude is 0.00 ms^-1\n", "\n", " the acceleration at amplitude is -159.89 ms^-2\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex26-pg47" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "g=10.\n", "t=0.3##period of shm\n", "##calculation\n", "x=g*t**2/(4.*math.pi**2)##for shm maximum amplitude\n", "##output\n", "print\"%s %.2f %s\"%(\"the maximum amplitude for bead to be in contact is \",x,\" m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the maximum amplitude for bead to be in contact is 0.02 m\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex27-pg48" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "p1=2.3##period of pendulum\n", "p2=3.1##period when pendulum is lengthened\n", "##calculation\n", "g=4.*math.pi**2/(p2**2-p1**2)##acceleration of free fall\n", "l=p1**2*g/(4.*math.pi**2)##length of pendulum\n", "##output\n", "print\"%s %.2f %s\"%(\"the acceleration of free fall is \",g,\" m/s^2\")\n", "print\"%s %.2f %s\"%(\"\\n the length of pendulum is \",l,\" m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the acceleration of free fall is 9.14 m/s^2\n", "\n", " the length of pendulum is 1.22 m\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex28-pg49" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##INPUT DATA\n", "f=55. ##frequency\n", "a=7.*10**-3 ##amplitude\n", "\n", "\n", "##calculation\n", "a=(-2.*math.pi*f)**2*a\n", "\n", "##output\n", "print\"%s %.2f %s\"%(\"the acceleration of the body when it is at its maximum displacement from its zero position is \",a,\" ms^-2\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the acceleration of the body when it is at its maximum displacement from its zero position is 835.96 ms^-2\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex29-pg50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "f=55.##frequency\n", "amp=7.*10**-3##amplitude\n", "m=1.2##mass\n", "##calculation\n", "e=0.5*m*4.*math.pi**2*f**2*amp**2##maximum pe occurs at zero position\n", "##output\n", "print\"%s %.2f %s\"%(\"the maximum pe is \",e,\" J\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the maximum pe is 3.51 J\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex30-pg51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "l=6.5##length\n", "m=0.06##mass of wire\n", "m1=10##mass attached\n", "g=9.8##acceleration due to gravity\n", "e=2.1*10**11##youngs modulus\n", "ro=8.*10**3##density of steel\n", "##calculation\n", "e1=m1*g*ro*l*l/(e*m)##extension caused \n", "pe=0.5*g*m1*e1##potential energy \n", "##output\n", "print\"%s %.2e %s\"%(\"the extension caused is \",e1,\" m\")\n", "print\"%s %.2f %s\"%(\"\\n the potential energy is \",pe,\" J\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the extension caused is 2.63e-03 m\n", "\n", " the potential energy is 0.13 J\n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex31-pg52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "w=250.*10**3\n", "s=0.00003##strain\n", "a=0.04##area\n", "w1=320.*10**3\n", "##calculation\n", "e=w/(a*s)##youngs module\n", "st=w1/a##stress\n", "##output\n", "print\"%s %.2f %s\"%(\"the youngs modulus is \",e,\" N/m^2\")\n", "print\"%s %.2f %s\"%(\"\\n the stress is \",st,\" N/m^2\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the youngs modulus is 208333333333.33 N/m^2\n", "\n", " the stress is 8000000.00 N/m^2\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex32-pg53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##input\n", "m=40.##mass\n", "g=9.8##acceleration due to gravity\n", "E=2*10**11##youngs modulus\n", "##calculation\n", "t1=m*g/5.##principle of momentum\n", "t2=4*m*g/5. ##principle of momentum\n", "d=4.*(t2-t1)/(4.*math.pi*10**-6*E)##difference in length\n", "##output\n", "print\"%s %.2e %s\"%(\"the difference is \",d,\" m\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the difference is 3.74e-04 m\n" ] } ], "prompt_number": 29 } ], "metadata": {} } ] }