{ "metadata": { "name": "", "signature": "sha256:77734ce79918b96bed43d7baa269682912f0f51f73bf77fadd993778504d6908" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 4 - Characteristics of AC motor" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "EXAMPLE 4.1 - PG NO:72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.1, Page 72\n", "import numpy\n", "p1=numpy.poly1d([1, -3, 1])#Polynomial equation\n", "print('Part a')\n", "print('roots of the equation when slip at max torque')\n", "x=numpy.roots(p1)\n", "print(x)\n", "\n", "\n", "p2=numpy.poly1d([1, -1.719,0.146])#polynomial equation in scilab function\n", "y=numpy.roots(p2)\n", "print('Part b')\n", "print('roots of the equation when slip at max load')\n", "print(y)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part a\n", "roots of the equation when slip at max torque\n", "[ 2.61803399 0.38196601]\n", "Part b\n", "roots of the equation when slip at max load\n", "[ 1.62939626 0.08960374]\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "EXAMPLE 4.3 - PG NO:76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.3, Page 76\n", "import numpy\n", "p1=numpy.poly1d([0.04, -0.0266,.0016 ])#Polynomial equation\n", "print('Part a')\n", "print('roots of the equation that slip will run is')\n", "x=numpy.roots(p1)\n", "print(x)\n", "#answers after calculation are accurate than textbook answers due to approximations" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part a\n", "roots of the equation that slip will run is\n", "[ 0.59812426 0.06687574]\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "EXAMPLE 4.5 - PG NO:81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.5, page 81\n", "import math\n", "pole=24.\n", "Ns=245.#in rpm\n", "N=(120.*50.)/pole#synchronous speed in rpm\n", "f=(N-Ns)/N\n", "p=110.#in kw\n", "T=(p*1000.*60.)/(2.*math.pi*Ns)\n", "v1=440./math.sqrt(3)#in v\n", "ws=(2*math.pi*250)/60\n", "s=0.02\n", "R=0.03125#in ohm\n", "x=math.sqrt(((3*R*v1**2)/(T*ws*s))-(R/s)**2)#by rearranging formula\n", "print'%s %.5f %s' %('Stator resistance per phase is=',x,'ohm')\n", "#calculating original resistance\n", "\n", "#Example 4.1, Page 72\n", "import numpy\n", "p1=numpy.poly1d([3190,-3235,72.78 ])#Polynomial equation\n", "print('Part a')\n", "print('The value of original resistance is')\n", "x=numpy.roots(p1)\n", "print(x)\n", "\n", "#Taking r=0.99108\n", "r=(0.99108-R)/1.25**2\n", "\n", "print'%s %.4f %s' %('The value of resistance to be added is =',r,' ohm')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stator resistance per phase is= 0.50358 ohm\n", "Part a\n", "The value of original resistance is\n", "[ 0.99108634 0.02302024]\n", "The value of resistance to be added is = 0.6143 ohm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "EXAMPLE 4.6 - PG NO:92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Example 4.6, Page no 92\n", "import math\n", "print(\"Part ii\")\n", "new_sin_delta=math.sin(math.pi/4)/.95\n", "delta=math.asin(new_sin_delta)\n", "x=math.degrees(delta)\n", "print'%s %.2f %s' %('The value of delta is =',x,'degree')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part ii\n", "The value of delta is = 48.10 degree\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }