{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# CHAPTER 1: INTRODUCTION" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Section-1.22, Problem 1, pg24" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " the length of the chain is 20 meters\n", " the error in the chain is 0.03\n", " the measured length 327 meters\n", " the ture length of the chain is 327.4905 meters\n" ] } ], "source": [ "#Variable Declaration\n", "L=20; # True length of the chain is defined as L\n", "print(' the length of the chain is ',L,'meters'); # Print L\n", "\n", "E=0.03; #Error in chain\n", "print(' the error in the chain is ',E); #Print E\n", "\n", "ML=327; #Measured length is defined as ML\n", "print(' the measured length ',ML,'meters'); #print ML\n", "\n", "tlength=((L+E)/L)*ML; #True length of L calculated\n", "print(' the ture length of the chain is ',tlength,'meters'); #Print true length.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "\n", "## Section 1.22, Problem 6, pg 27." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " for n=1\n", "the temperature correction is 0.00396 meters\n", "the pull corretion is 0.002380952380952381 meters\n", "the sag correction is -0.0026680499999999995 meters\n", "the total correction is 0.0036729023809523816 meters\n", "the true length is 780.0954954619046\n", " for n=2\n", "the temperature correction is 0.00396 meters\n", "the pull corretion is 0.002380952380952381 meters\n", "the sag correction is -0.0006670124999999999 meters\n", "the total correction is 0.005673939880952382 meters\n", "the true length is 780.1475224369049\n" ] } ], "source": [ "#Variable declaration\n", "L=30; #Length of tape\n", "t0=20; #Temperature of tape\n", "p0=10; #Pull under which tape is present\n", "pm=15; #Measured line pull\n", "tm=32; #Mean temperature.\n", "a=0.03; #Cross-sectional area\n", "al=11/(1000000); #Temperature correction co-efficient\n", "E=2.1*(1000000); #E for steel\n", "w=0.693; #Total weight\n", "ml=780; #measured length\n", "n=1; #n defined\n", "print(' for n=1'); #print n value\n", "ct=al*L*(tm-t0); #temperature correction calculated\n", "print('the temperature correction is',ct,'meters'); #print temperature correction\n", "\n", "cp=(pm-p0)*L/(a*E); #pull correction calculated\n", "print('the pull corretion is ',cp,' meters'); #print pull correction\n", "\n", "cs=-L*w*w/(24*pm*pm*n*n); #sag correction calculated\n", "print('the sag correction is ',cs,'meters'); #print sag correction\n", "\n", "e=ct+cp+cs; #total correction calculated\n", "print('the total correction is ',e,'meters'); #total correction printed\n", "\n", "l1=L+e; #correction in length =sum of correction and measured length \n", "\n", "truelength=(l1/L)*ml; #true length calculated\n", "print('the true length is ',truelength); #true length printed\n", "\n", "n=2; #new n defined\n", "\n", "print(' for n=2'); #print n value\n", "ct=al*L*(tm-t0); #temperature correction calculated\n", "print('the temperature correction is',ct,'meters'); #print temperature correction\n", "\n", "\n", "cp=(pm-p0)*L/(a*E); #pull correction calculated\n", "print('the pull corretion is ',cp,' meters'); #print pull correction\n", "\n", "cs=-L*w*w/(24*pm*pm*n*n); #sag correction calculated\n", "print('the sag correction is ',cs,'meters'); #print sag correction\n", "\n", "e=ct+cp+cs; #total correction calculated\n", "print('the total correction is ',e,'meters'); #total correction printed\n", "\n", "l1=L+e; #correction in length =sum of correction and measured length \n", "\n", "truelength=(l1/L)*ml; #true length calculated\n", "print('the true length is ',truelength); #true length printed\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Section-1.23, Problem 4, pg39" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " the value of ab is 28.590787835233098 meters\n", " the value of b1c is 23.22557994840693 meters\n", " the value of c1d is 20.582482037955145 meters\n", " the value of d1e is 28.95316898172065 meters\n", "the total distance is 101.35201880331583 meters\n" ] } ], "source": [ "#Library imported\n", "import math \n", "\n", "\n", "ab=28.7*math.cos(5*(math.pi/180)); #AB calculated using trigonometry\n", "b1c=23.4*math.cos(7*(math.pi/180)); #B'C calculated\n", "c1d=20.9*math.cos(10*(math.pi/180)); # C'D calculated\n", "d1e=29.6*math.cos(12*(math.pi/180)); # D'E calculated\n", "print(' the value of ab is ',ab,'meters'); #AB printed\n", "\n", "print(' the value of b1c is ',b1c,'meters'); # B'C printed\n", "\n", "print(' the value of c1d is ',c1d,'meters'); # C'D printed\n", "\n", "print(' the value of d1e is ',d1e,'meters'); #D'E printed\n", "\n", "\n", "total=ab+b1c+c1d+d1e; #total calculated\n", "print('the total distance is ',total,'meters'); #total printed\n" ] } ], "metadata": { "celltoolbar": "Raw Cell Format", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }