{ "metadata": { "name": "", "signature": "sha256:85e9fe66492d8e2bf21b397989dbba9327240cd1300820fe26869c1390e3cf15" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter1-Introduction fluid mechanics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of new variables\n", "#calculate density \n", "M=29. ## Molecular weight of air\n", "R=8314.3 ## J/mol K Gas constant\n", "T=300. ##K Temperature\n", "P=1. ##kg/cm^2 Pressure\n", "g=9.8 ##m/s^2 Acceleration due to gravity\n", "##calculations\n", "R=R/M\n", "P=P*g*10**4\n", "rho=P/(R*T)\n", "##result\n", "print'%s %.2f %s'%(' Density = ',rho,' kg/m^3 ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Density = 1.14 kg/m^3 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of new variables\n", "#calculate shear stress\n", "t=2. ##cm thickness\n", "U=3. ##m/s Velocity\n", "mu=0.29 ##kg/m s Coefficient of Viscocity\n", "##calculations\n", "tau=mu*U/(t*10**-2)\n", "##results\n", "print'%s %.2f %s'%(' Shear = ',tau,' N/m^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Shear = 43.50 N/m^2\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg13" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of new variables\n", "#calculate pressure differnce\n", "sigma=2.5*10**-2 ##N/m\n", "D=10 ##cm\n", "##calculations\n", "R=D/2.\n", "dP=2.*sigma/(R*10**-2)\n", "##result\n", "print'%s %.2f %s'%('The pressure difference is = ',dP,' N/m^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pressure difference is = 1.00 N/m^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of new variables\n", "#calculate rise of water and rise of mercury\n", "R=1. ##mm\n", "sigma=0.073 ##N/m\n", "theta=0. ##degrees\n", "rho=1000. ##kg/m^3\n", "g=9.8 ##m/s^2\n", "##calculations\n", "theta=theta*math.pi/180 ##radians\n", "h=2*sigma*math.cos(theta)/(rho*g*R*10**-3)\n", "##result\n", "print'%s %.2f %s'%('The rise of water = ',h,' m')\n", "R=1. ##mm\n", "sigma=0.48 ##N/m\n", "theta=130. ##degrees\n", "rho=13600. ##kg/m^3\n", "g=9.8 ##m/s^2\n", "##calculations\n", "theta=theta*math.pi/180 ##radians\n", "h=2*sigma*math.cos(theta)/(rho*g*R*10**-3)\n", "##result\n", "print'%s %.2e %s'%('\\n The rise of mercury = ',h,' m')\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The rise of water = 0.01 m\n", "\n", " The rise of mercury = -4.63e-03 m\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg15" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of new variables\n", "#calculate chenge in pressure and change in volume\n", "E=2.34*10**9 ##N/m^2 Modulus of Elasticity\n", "d=1 ##km depth\n", "rho=1000. ##kg/m^3 density\n", "g=9.8 ##m/s^2 Acceleration due to gravity\n", "##calculations\n", "d=d*1000. \n", "dp=rho*g*d\n", "dVV=dp/E\n", "##result\n", "print'%s %.2e %s'%('The change in pressure is ',dp,' N/m^2 ')\n", "print'%s %.3e %s'%('\\n Change in volume is ',dVV,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in pressure is 9.80e+06 N/m^2 \n", "\n", " Change in volume is 4.188e-03 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex6-pg16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##initialization of new variables\n", "#calculate speed of sound in air and speed of sound in sea water\n", "T=300. ##K\n", "gama=1.4\n", "R=286.6\n", "##calculation\n", "## for air\n", "a=math.sqrt(gama*R*T)\n", "##result\n", "print'%s %.2f %s'%('The speed of sound in air is ',a,' m/s ')\n", "## for sea water\n", "E=2.34*10**9 ## N/m^2\n", "rho=1000. ##kg/cm^2\n", "a=math.sqrt(E/rho)\n", "##result\n", "print'%s %.2f %s'%(' \\n The speed of sound in sea waer is ',a,' m/s ')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of sound in air is 346.95 m/s \n", " \n", " The speed of sound in sea waer is 1529.71 m/s \n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }