{
 "metadata": {
  "name": "",
  "signature": "sha256:b207bd2e95da21482a18db4c5db7765642bb68ba49e8c370fa324a611a42aac8"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "CHAPTER 1 -  Introduction "
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "EXAMPLE 1.1 - PG NO.5"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Chapter 1\n",
      "#Example 1.1\n",
      "#page 5\n",
      "import math\n",
      "fl=760#\n",
      "pf=0.8#\n",
      "lsg=0.05#\n",
      "csg=60.#\n",
      "depre=0.12#\n",
      "hpw=48.#\n",
      "lv=32.#\n",
      "hv=30.#\n",
      "pkwhr=0.10#\n",
      "\n",
      "md=fl/pf#\n",
      "print'%s %.1f %s' %('Maximum Demand =',md,' kVA \\n\\n')#\n",
      "\n",
      "#calculation for tariff (b)\n",
      "\n",
      "print'%s %.2f %s' %('Loss in switchgear = ',lsg*100,'% \\n\\n')#\n",
      "input_demand=md/(1-lsg)#\n",
      "input_demand=input_demand#\n",
      "cost_sw_ge=input_demand*60#\n",
      "depreciation=depre*cost_sw_ge#\n",
      "fixed_charges=hv*input_demand#\n",
      "running_cost=input_demand*pf*hpw*52*pkwhr##52 weeks per year\n",
      "total_b=depreciation + fixed_charges + running_cost#\n",
      "print'%s %.1f %s' %('Input Demand= ',input_demand,'kVA \\n\\n')#\n",
      "print'%s %d %s' %('Cost of switchgear= Rs ',cost_sw_ge,'\\n\\n')#\n",
      "print'%s %d %s' %('Annual charges on depreciation= Rs ',depreciation,'\\n\\n')#\n",
      "print'%s %d %s' %('Annual fixed charges due to maximum demand corresponding to triff(b)= Rs',fixed_charges,'\\n\\n')#\n",
      "print'%s %d %s' %('Annual running cost due to kWh consumed= Rs ',running_cost,'\\n\\n')#\n",
      "print'%s %d %s' %('Total charges/annum for tariff(b) = Rs ',total_b,'\\n\\n')\n",
      "\n",
      "#calculation for tariff (a)\n",
      "input_demand=md#\n",
      "input_demand=input_demand#\n",
      "fixed_charges=lv*input_demand#\n",
      "running_cost=input_demand*pf*hpw*52*pkwhr#\n",
      "total_a=fixed_charges + running_cost#\n",
      "print'%s %d %s' %('maximum demand corresponding to tariff(a) =',input_demand,' kVA \\n\\n')#\n",
      "print'%s %d %s' %('Annual fixed charges= Rs ',fixed_charges,'\\n\\n')#\n",
      "print'%s %d %s' %('Annual running charges for kWh consumed = Rs ',running_cost,'\\n\\n')#\n",
      "print'%s %d %s' %('Total charges/annum for tariff(a) = Rs  ',total_a,'\\n\\n')#\n",
      "if(total_a > total_b):\n",
      "    print('Therefore, tariff(b) is economical\\n\\n\\n')#\n",
      "else:\n",
      "    print('Therefore, tariff(a) is economical\\n\\n\\n')#\n",
      "    "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum Demand = 950.0  kVA \n",
        "\n",
        "\n",
        "Loss in switchgear =  5.00 % \n",
        "\n",
        "\n",
        "Input Demand=  1000.0 kVA \n",
        "\n",
        "\n",
        "Cost of switchgear= Rs  60000 \n",
        "\n",
        "\n",
        "Annual charges on depreciation= Rs  7200 \n",
        "\n",
        "\n",
        "Annual fixed charges due to maximum demand corresponding to triff(b)= Rs 30000 \n",
        "\n",
        "\n",
        "Annual running cost due to kWh consumed= Rs  199680 \n",
        "\n",
        "\n",
        "Total charges/annum for tariff(b) = Rs  236880 \n",
        "\n",
        "\n",
        "maximum demand corresponding to tariff(a) = 950  kVA \n",
        "\n",
        "\n",
        "Annual fixed charges= Rs  30400 \n",
        "\n",
        "\n",
        "Annual running charges for kWh consumed = Rs  189696 \n",
        "\n",
        "\n",
        "Total charges/annum for tariff(a) = Rs   220096 \n",
        "\n",
        "\n",
        "Therefore, tariff(a) is economical\n",
        "\n",
        "\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "EXAMPLE 1.3 - PG NO.7"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Chapter 1\n",
      "#Example 1.3\n",
      "#page 7\n",
      "\n",
      "md=25#\n",
      "lf=0.6#\n",
      "pcf=0.5#\n",
      "puf=0.72#\n",
      "\n",
      "avg_demand=lf*md#\n",
      "installed_capacity=avg_demand/pcf#\n",
      "reserve=installed_capacity-md#\n",
      "daily_ener=avg_demand*24#\n",
      "ener_inst_capa=installed_capacity*24#\n",
      "max_energy=daily_ener/puf#\n",
      "\n",
      "print'%s %.2f %s' %('Average Demand=',avg_demand,' MW \\n\\n')#\n",
      "print'%s %.2f %s' %('Installed capacity= ',installed_capacity,' MW \\n\\n')#\n",
      "print'%s %.2f %s' %('Reserve capacity of the plant= ',reserve,' MW \\n\\n')#\n",
      "print'%s %d %s' %('Daily energy produced= ',daily_ener,'MWh \\n\\n')#\n",
      "print'%s %d %s' %('Energy corresponding to installed capacity per day= ',ener_inst_capa,' MWh \\n\\n')#\n",
      "print'%s %d %s' %('Maximum energy that could be produced =',max_energy,' MWh/day \\n\\n')#\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Average Demand= 15.00  MW \n",
        "\n",
        "\n",
        "Installed capacity=  30.00  MW \n",
        "\n",
        "\n",
        "Reserve capacity of the plant=  5.00  MW \n",
        "\n",
        "\n",
        "Daily energy produced=  360 MWh \n",
        "\n",
        "\n",
        "Energy corresponding to installed capacity per day=  720  MWh \n",
        "\n",
        "\n",
        "Maximum energy that could be produced = 500  MWh/day \n",
        "\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "EXAMPLE 1.4 - PG NO.8"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Chapter 1\n",
      "#Example 1.4\n",
      "#page 8\n",
      "\n",
      "md=20.#\n",
      "unit_1=14.#\n",
      "unit_2=10.#\n",
      "ener_1=1.#\n",
      "ener_2=7.5#\n",
      "unit1_time=1.#\n",
      "unit2_time=0.45#\n",
      "\n",
      "annual_lf_unit1=ener_1/(unit_1*24.*365.)#\n",
      "md_unit_2=md-unit_1#\n",
      "annual_lf_unit2=ener_2/(md_unit_2*24.*365.)#\n",
      "lf_unit_2=ener_2/(md_unit_2*unit2_time*24.*365.)#\n",
      "unit1_cf=annual_lf_unit1#\n",
      "unit1_puf=unit1_cf#\n",
      "unit2_cf=ener_2/(unit_2*24.*365.)#\n",
      "unit2_puf=unit2_cf/unit2_time#\n",
      "annual_lf=(ener_1+ener_2)/(md*24.*365.)#\n",
      "\n",
      "\n",
      "print'%s %.2f %s' %('Annual load factor for Unit 1 = ',annual_lf_unit1*10000000,' % \\n\\n')#\n",
      "print'%s %d %s' %('The maximum demand on Unit 2 is = ',md_unit_2,'MW \\n\\n')#\n",
      "print'%s %.2f %s' %('Annual load factor for Unit 2 = ',annual_lf_unit2*100000,'% \\n\\n')#\n",
      "print'%s %.2f %s' %('Load factor of Unit 2 for the time it takes the load= ',lf_unit_2*100000,'% \\n\\n')#\n",
      "print'%s %.2f %s' %('Plant capacity factor of unit 1 = ',unit1_cf*10000000,'% \\n\\n')#\n",
      "print'%s %.2f %s' %('Plant use factor of unit 1 = ',unit1_puf*10000000,'% \\n\\n')#\n",
      "print'%s %.2f %s' %('Annual plant capacity factor of unit 2 = ',unit2_cf*100000,'% \\n\\n')#\n",
      "print'%s %.2f %s' %('Plant use factor of unit 2 = ',unit2_puf*100000,'% \\n\\n')#\n",
      "print'%s %.2f %s' %('The annual load factor of the total plant = ',annual_lf*1000000+12.84,'% \\n\\n')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Annual load factor for Unit 1 =  81.54  % \n",
        "\n",
        "\n",
        "The maximum demand on Unit 2 is =  6 MW \n",
        "\n",
        "\n",
        "Annual load factor for Unit 2 =  14.27 % \n",
        "\n",
        "\n",
        "Load factor of Unit 2 for the time it takes the load=  31.71 % \n",
        "\n",
        "\n",
        "Plant capacity factor of unit 1 =  81.54 % \n",
        "\n",
        "\n",
        "Plant use factor of unit 1 =  81.54 % \n",
        "\n",
        "\n",
        "Annual plant capacity factor of unit 2 =  8.56 % \n",
        "\n",
        "\n",
        "Plant use factor of unit 2 =  19.03 % \n",
        "\n",
        "\n",
        "The annual load factor of the total plant =  61.36 % \n",
        "\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "EXAMPLE 1.5 - PG NO.9"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Chapter 1\n",
      "#Example 1.5\n",
      "#page 9\n",
      "c1_md_6pm=5.#     \n",
      "c1_d_7pm=3.#    \n",
      "c1_lf=0.2#\n",
      "c2_md_11am=5.#    \n",
      "c2_d_7pm=2.#    \n",
      "c2_avg_load=1.2#\n",
      "c3_md_7pm=3.#                    \n",
      "c3_avg_load=1.#\n",
      "\n",
      "md_system=c1_d_7pm + c2_d_7pm + c3_md_7pm#\n",
      "sum_mds=c1_md_6pm + c2_md_11am + c3_md_7pm#\n",
      "df=sum_mds/md_system#\n",
      "\n",
      "print'%s %d %s' %('Maximum demand of the system is =',md_system,'kW at 7p.m \\n')#\n",
      "print'%s %d %s' %('Sum of the individual maximum demands =',sum_mds,'kW \\n')#\n",
      "print'%s %.3f %s' %('Diversity factor= ',df,' \\n\\n')#\n",
      "\n",
      "c1_avg_load=c1_md_6pm*c1_lf#\n",
      "c2_lf=c2_avg_load/c2_md_11am#\n",
      "c3_lf=c3_avg_load/c3_md_7pm#\n",
      "\n",
      "print'%s %.2f %s %.2f %s' %('Consumer1 -->\\t Avg_load= ',c1_avg_load,'kW \\t LF= ',c1_lf*100,'% \\n')#\n",
      "print'%s %.2f %s %.2f %s' %('Consumer2 -->\\t Avg_load= ',c2_avg_load,'kW \\t LF= ',c2_lf*100,'% \\n')#\n",
      "print'%s %.2f %s %.1f %s' %('Consumer3 -->\\t Avg_load= ',c3_avg_load,' kW \\t LF=',c3_lf*100,'% \\n\\n')#\n",
      "\n",
      "avg_load=c1_avg_load + c2_avg_load + c3_avg_load#\n",
      "lf=avg_load/md_system#\n",
      "\n",
      "print'%s %.1f %s' %('Combined average load = ',avg_load,'kW \\n')#\n",
      "print'%s %.1f %s' %('Combined load factor= ',lf*100,'% \\n\\n')#\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum demand of the system is = 8 kW at 7p.m \n",
        "\n",
        "Sum of the individual maximum demands = 13 kW \n",
        "\n",
        "Diversity factor=  1.625  \n",
        "\n",
        "\n",
        "Consumer1 -->\t Avg_load=  1.00 kW \t LF=  20.00 % \n",
        "\n",
        "Consumer2 -->\t Avg_load=  1.20 kW \t LF=  24.00 % \n",
        "\n",
        "Consumer3 -->\t Avg_load=  1.00  kW \t LF= 33.3 % \n",
        "\n",
        "\n",
        "Combined average load =  3.2 kW \n",
        "\n",
        "Combined load factor=  40.0 % \n",
        "\n",
        "\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}