{
 "metadata": {
  "name": "",
  "signature": "sha256:60b1203d60983bbbb28528cd720bc31b7ac71ec9fc83b7d2e5e78e90b9f2b472"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter1-Introduction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex1-pg32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "#calculate the steady state\n",
      "\n",
      "\n",
      "##The thickness of the slab(L) is 80mm or .08m\n",
      "##The thermal conductivity(k)of the material is .20 W/(m*K)\n",
      "T1=40.;\n",
      "T2=20.;\n",
      "L=.08;\n",
      "k=.20;\n",
      "##The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L\n",
      "print(\"The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L in W/m^2 \")\n",
      "q=k*(T1-T2)/L\n",
      "print(q)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The steady state heat transfer rate per unit area through the thick slab is given by q=k(T1-T2)/L in W/m^2 \n",
        "50.0\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex2-pg32"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "#calculate the thickness of masonry wall\n",
      "print(\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 2\")\n",
      "##The thermal conductivity(km)of masonry wall is .8 W/(mK)\n",
      "##The thermal conductivity(kc)of composite wall is .2 W/(mK)\n",
      "##The thickness of composite wall(Lc) is 100 mm or .1 m\n",
      "km=.8;\n",
      "kc=.2;\n",
      "Lc=.1;\n",
      "##The thickness of masonry wall(Lm) is to be found. \n",
      "##The steady state heat flow(qm)through masonry wall is km(T1-T2)/L\n",
      "## The steady state heat flow(qc)through composite wall is kc(T1-T2)/L\n",
      "##As the steady rate of heat flow through masonry wall is 80% that through composite wall and both the wall have same surface area and same temp. difference so qm/qc=0.8=(km/kc)*(Lc/Lm)\n",
      "##The thickness of masonry wall is Lm.\n",
      "print (\"The thickness of masonry wall is Lm in m\")\n",
      "Lm=(km/kc)*(Lc/(0.8))\n",
      "print(Lm)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Introduction to heat transfer by S.K.Som, Chapter 1, Example 2\n",
        "The thickness of masonry wall is Lm in m\n",
        "0.5\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex4-pg36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "## printlay warning for floating point exception\n",
      "print(\"Introduction to heat transfer by S.K.Som Chapter 1 Example 4\")\n",
      "hbr=200.;\n",
      "Tinf=100.;\n",
      "Ts=20.;\n",
      "##The rate of heat transfer per unit area is q\n",
      "print (\"The rate of heat transfer per unit area q=hbr*(Tinf-Ts) in W/m^2\")\n",
      "q=hbr*(Tinf-Ts)\n",
      "print(q)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Introduction to heat transfer by S.K.Som Chapter 1 Example 4\n",
        "The rate of heat transfer per unit area q=hbr*(Tinf-Ts) in W/m^2\n",
        "16000.0\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex5-pg36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "#calculat e surface area\n",
      "print(\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 5\")\n",
      "\n",
      "hbr=800.;\n",
      "deltaT=(75.-25.);\n",
      "Q=20.;\n",
      "print(\"The heat exchanger surface area(A)in m^2 required for 20 MJ/h of heating is \")\n",
      "A = (Q*10**6.)/(3600.*hbr*deltaT)\n",
      "print round(A,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Introduction to heat transfer by S.K.Som, Chapter 1, Example 5\n",
        "The heat exchanger surface area(A)in m^2 required for 20 MJ/h of heating is \n",
        "0.14\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex6-pg37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "##The ambient temprature (Tinf) \n",
      "print(\"Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\")\n",
      "Ts=225.;\n",
      "Tinf=25.;\n",
      "## |because it is modulus function and it converts negative values to positive value.\n",
      "X=0.02;\n",
      "A=.1;\n",
      "m=4;\n",
      "cp=2.8;\n",
      "hbr=(m*cp*10**3*X)/(A*(Ts-Tinf))\n",
      "print round(hbr,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Introduction to heat transfer by S.K.Som, Chapter 1, Example 6\n",
        "11.2\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}