{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2 Nuclear Sturcture and Radioactivity" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_1 pgno:25" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Half life of radioactive nuclide=t1/2=minutes 14.7674928978\n", "\n", "Time required for the activity to decrease to 25percent of the initial activity=t1=minutes 68.0335182976\n", "\n", "Time required for the activity to decrease to 10percent of the initial activity=t2=minutes 113.001227913\n" ] } ], "source": [ "from math import log\n", "N0=3396.;#no. of counts per minute given by radioactive nuclide at a given time#\n", "N=1000.;#no. of counts per minute given by radioactive nuclide one hour later#\n", "thalf=0.693*60/(2.303*log(N0/N));#half life of nuclide in minutes#\n", "print'Half life of radioactive nuclide=t1/2=minutes',thalf\n", "t1=2.303*log(100/25)*thalf/0.693;#time required for the activity to decrease to 25% of the initial activity in minutes#\n", "print'\\nTime required for the activity to decrease to 25percent of the initial activity=t1=minutes',t1\n", "t2=2.303*log(100/10)*thalf/0.693;#time required for the activity to decrease to 10% of the initial activity in minutes#\n", "print'\\nTime required for the activity to decrease to 10percent of the initial activity=t2=minutes',t2\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_2 pgno:27" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Half life of 226Ra molecule=t1/2=years 1584.62090409\n" ] } ], "source": [ "R=3.7*10**10;#no. of alpha particles per second emitted by 1g of 226Ra#\n", "N=(6.023*10**23)/226;#no. of atoms of 226Ra#\n", "yr=3.15*10**7;#no of seconds in a year#\n", "thalf=0.693*N/(R*yr);#half life of 226Ra in years#\n", "print'Half life of 226Ra molecule=t1/2=years',thalf#here the answer written in textbook is wrongly printed actual answer will be the one we are getting here#\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_3 pgno:29" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams 0.113352495089\n" ] } ], "source": [ "thalf=14.8*60*60;#half life of 24Na atom in seconds#\n", "L=6.023*10**23;#Avagadro number#\n", "v=3.7*10**10;#1 Ci of radioactivity in disintegrations per second#\n", "w=(24*10**6*v*thalf)/(0.693*L);#weight of 1 Ci of 24Na in grams#\n", "print'Weight of 1 Ci of 24Na=w=micrograms=1.13*10**-7grams',w\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_4 pgno:30" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dM value of H atom=dM=amu 0.00239\n", "\n", "Binding energy of H atom=BE=MeV 2.22509\n" ] } ], "source": [ "Mp=1.00728;#mass of proton in amu#\n", "Mn=1.00866;#mass of neutronin amu#\n", "MH=2.01355;#isotopic mass of H atom in amu#\n", "dM=((1*Mp)+(1*Mn)-MH);#dM value of H atom in amu#\n", "print'dM value of H atom=dM=amu',dM\n", "BE=dM*931;#binding energy of H atom in MeV#\n", "print'\\nBinding energy of H atom=BE=MeV',BE\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_5 pgno:32" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Age of the specimen=t=%fyears 36120.0499843\n" ] } ], "source": [ "from math import log\n", "N0=15.3;#decay rate of Contemporary Carbon in disintegrations/min/gram#\n", "N=2.25;#decay rate of 14C specimen in disintegrtions/min/gram#\n", "thalf=5670.;#half life of nuclide in years#\n", "t=2.303*log(N0/N)*thalf/0.693;#Age of the specimen in years#\n", "print'Age of the specimen=t=years',t#here the answer given in textbook is actually wrong we get twice that of the answer which is shown through execution#\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_6 pgno:33" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium\n", "\n", "N0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\n", "Since N is proportional to 1,N0 is proportional to 1.0523.\n", "\n", "Age of the mineral=t=years=7.62*10**8years 762356478.526\n" ] } ], "source": [ "from math import log\n", "thalf=4.5*10**9;#half life of Uranium in years#\n", "print'Here N0 and N must be in terms of Uranium.N is proportional to 1gram og Uranium'\n", "print'\\nN0 can be calculated from the given data.0.0453grams of 206Pb corresponds to 238*0.0453/206=0.0523grams of 238U,i.e 0.0453 grams of 206Pb must have been formed by the decaying of 0.523grams of 238U.\\nSince N is proportional to 1,N0 is proportional to 1.0523.'\n", "N0=1.0523;\n", "N=1;\n", "t=2.303*log(N0/N)*thalf/0.693;#Age of the mineral in years#\n", "print'\\nAge of the mineral=t=years=7.62*10**8years',t#here also the answer given in textbook is wrong the one resulted through execution is the right one#\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }