{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 12:Measurement of Non-Electrical Quantities" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.1,Page No:600" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import math\n", "\n", "#variable declaration\n", "Gf = 2; #guage factor \n", "a = 100*10**6; #stress in N/m**2\n", "E = 200*10**9; #elasticity of steel in N/m**2\n", "\n", "#calculation\n", "st = (a/float(E)); #strain\n", "x = Gf*st; # change in guage resistance\n", "p = (x)*100; #percentage change in resistance in %\n", "\n", "#result\n", "print\"percentage change in resistance %1.1f\"%p,\"%\";\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.4,Page No:631" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "water flow rate 0.0586 m**3/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "D1 = 200*10**-3; # inlet horizontal venturimeter in m\n", "D2 = 100*10**-3; #throat horizontal enturimeter in m\n", "h = 220*10**-3; #pressure in m\n", "Cd = 0.98; #coefficient of discharge \n", "phg = 13.6; #specific gravity of mercury\n", "p = 1000; #density of water in kg/m**3\n", "g = 9.81; #gravitational constant\n", "pw = 1; #density of water in kg/m**3\n", "w = 9.81; \n", "\n", "\n", "\n", "#calculation\n", "x = (g)*(h)*(phg-pw)*1000; #differential pressure head in N/m**2\n", "a = 1-((D2/float(D1))**4); #velocity approach factor\n", "M = 1/(float(math.sqrt(a))); #velocity of approach\n", "b = math.sqrt(((2*g)/(float(w*p)))*x);\n", "A2 = (math.pi/float(4))*((D2)**2); #area in m**2\n", "Q = Cd*M*A2*(b); #discharge through venturimeter in m**3/s\n", " \n", "#result\n", "print'water flow rate %3.4f'%Q,'m**3/s'; \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.5,Page No:631" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rate of flow of oil 0.137850 m**3/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "D1 = 400*10**-3; #diameter at inlet in m\n", "D2 = 200*10**-3; #diameter at throat in m\n", "y = 50*10**-3; #reading of differential manometer in m\n", "Shl = 13.6; #specific gravity of mercury in U-tube \n", "Sp = 0.7; #specific gravity of oil in U-tube \n", "h = 0.92;\n", "\n", "#bernoulli's equation\n", "#p1/w +z1+V1**2=p2/w +z2+V2**2\n", "#solving we get h+(V1**2/2*g)-(V2**2/2*g)=0\n", "# calculations\n", "\n", "A1 = (math.pi/float(4))*(D1**2); #area in m**2\n", "A2 = (math.pi/4)*(D2**2); #area in m**2\n", "a = A2/float(A1); #ratio of areas\n", "#V1 = a*V2;\n", "#h+(V1**2/2*g)*(1-(1/4))=0\n", "V2 = math.sqrt((2*g*h)/(float(1-((a)**2)))); \n", "Q = A2*V2; #rate of oil flow in m**3/s\n", "\n", "#result\n", "print'rate of flow of oil %f'%Q,'m**3/s';\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 12.6,Page No:633" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "difference in pressure head 4952.073 N/m**2\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Q = 0.015; #rate of flow in m**3/s\n", "D0 = 100*10**-3; #diameter orifice in m\n", "D1 = 200*10**-3; #diameter of pipe in m\n", "Cc = 0.6; #coefficient of contraction\n", "Cd = 0.6; #coefficient of discharge\n", "E = 1; #thermal expansion factor\n", "g = 9.81; #gravitational constant \n", "w = 9810;\n", "\n", "#calculations\n", "A0 = ((math.pi)/float(4))*(D0**2); #area in m**2\n", "A1 = ((math.pi)/float(4))*(D1**2); #area in m**2\n", "a = (Cc*A0)/(float(A1)); \n", "M = math.sqrt(1-((a)**2));\n", "K = Cd/float(M);\n", "x = ((Q/float(K*E*A0))**2);\n", "dp = (x*w/float(2*g)); #difference in pressure head in N/m**2\n", "\n", "#result\n", "print'difference in pressure head %3.3f'%dp,'N/m**2';\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example:12.7,Page No:633" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "discharge through the orifice 0.742 m**3/s\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "C0 = 0.6; #coefficient of orifice\n", "Cv = 0.97; #coefficient of discharge\n", "Qv = 1.2; #flow rate in m**3/s\n", "\n", "#calculations\n", "Q0 = (C0/Cv)*Qv; #discharge through the orifice in m**3/s\n", "\n", "#result\n", "print'discharge through the orifice %3.3f'%Q0,'m**3/s'\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example:12.8,Page No:634" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "velocity of submarine 25.0 km/h\n" ] } ], "source": [ "import math\n", "\n", "#variable declaration\n", "Shl = 13.6; #specific gravity of mercury\n", "Sl = 1.025; #specific gravity of sea water\n", "y = 200*10**-3; #reading in m\n", "g = 9.81; #constant\n", "\n", "#calculation\n", "x = Shl/float(Sl);\n", "h = (y*((x)-1)); #head\n", "V = math.sqrt(2*g*h); #velocity of submarine in km/h\n", "\n", "#result\n", "print'velocity of submarine %3.1f'%(V*(18/float(5))),'km/h';" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }