{ "metadata": { "name": "", "signature": "sha256:2206f2855e4232dc4600c4e414262a1e7f06df22f4a8f22ba905ba92f7813175" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter1-Introduction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##calculate the\n", "## initialization of variables\n", "import math\n", "## part (a)\n", "a=700. ## M Pa from figure 1.8\n", "b=100. ## M Pafrom figure 1.8\n", "m=1/6. ## from figure 1.8\n", "Y=450. ## M Pa from figure 1.9\n", "##calculations\n", "sigma_u=a+m*b\n", "## results\n", "print('\\n part (a) \\n')\n", "print\"%s %.2f %s\"%(' The ultimate strength is sigma = ',sigma_u,' M Pa')\n", "print\"%s %.2f %s\"%('\\n and the yield strength is Y = ',Y,'M Pa')\n", "\n", "## part (b)\n", "c1=62. ## from figure 1.8\n", "d1=0.025 ## from figure 1.8\n", "c2=27. ## from figure 1.10a\n", "d2=0.04 ## from figure 1.10a\n", "## calculations\n", "U_f1=c1*b*d1*10**6\n", "U_f2=c2*b*d2*10**6\n", "## results\n", "print('\\n part (b)')\n", "print\"%s %.2e %s\"%('\\n The modulus of toughness for alloy steel is Uf = ',U_f1,' N/m^2')\n", "print\"%s %.2e %s\"%('\\n and structural steel is Uf = ',U_f2,' N/m^2')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " part (a) \n", "\n", " The ultimate strength is sigma = 716.67 M Pa\n", "\n", " and the yield strength is Y = 450.00 M Pa\n", "\n", " part (b)\n", "\n", " The modulus of toughness for alloy steel is Uf = 1.55e+08 N/m^2\n", "\n", " and structural steel is Uf = 1.08e+08 N/m^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##calculate the permanet strain\n", "## initialization of variables\n", "import math\n", "sigma=500. ## Stress M Pa\n", "eps=0.0073 ## Strain\n", "sigma_A=343. ## M Pa from figure 1.9\n", "eps_A=0.00172 ## from figure 1.9\n", "## part (a)\n", "E=sigma_A/eps_A\n", "\n", "## part (B)\n", "eps_e=sigma/E\n", "eps_p=eps-eps_e\n", "## results\n", "print(' part (a) \\n')\n", "print\"%s %.2f %s\"%(' The modulus of elasticity of the rod is E = ',E/1000,' G Pa')\n", "print('\\n part (b)')\n", "print\"%s %.4f %s\"%('\\n the permanent strain is = ',eps_p,'')\n", "print\"%s %.4f %s\"%('\\n and the strain recovered is =',eps_e,'')\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " part (a) \n", "\n", " The modulus of elasticity of the rod is E = 199.42 G Pa\n", "\n", " part (b)\n", "\n", " the permanent strain is = 0.0048 \n", "\n", " and the strain recovered is = 0.0025 \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##calculate the diameter\n", "## initialization of variables\n", "import math\n", "D=25. ## kN\n", "L=60. ## kN\n", "W=30. ##kN\n", "Y=250. ## M Pa\n", "safety=5./3. ## AISC, 1989\n", "## calculations\n", "Q=(D+L+W)*10**3. ## converted to N\n", "A=safety*Q/Y\n", "r=math.sqrt(A/math.pi)+0.5 ## additional 0.5 mm is for extra safety\n", "d=1.8*r ## diameter\n", "## results\n", "print('Part (a) \\n ')\n", "print\"%s %.2f %s %.2f %s \"%('A rod of ',d,' mm'and ' in diameter, with a cross sectional area of ',math.pi*(d**2./4.),' mm^2, is adequate')\n", "## The diameter is correct as given in the textbook. Area doesn't match due to rounding off error and partly because it's a design problem.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part (a) \n", " \n", "A rod of 29.02 in diameter, with a cross sectional area of 661.39 mm^2, is adequate \n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }