{ "metadata": { "name": "", "signature": "sha256:b71c5763a44a53c43becf4b38bc4dc6ca15fcaba00869ac6f1172cbb9803b804" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1 - ELECTRONIC MATERIALS AND COMPONENTS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1 - Pg 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the value of resistor\n", "print '%s' %(\"Refer to the figure 1.52\")\n", "print '%s' %(\"Hold the resistor as shown in the figure such that tolerance is on your extreme right.\")\n", "print '%s' %(\"Now the value of the resistor is equal to\")\n", "print '%s' %(\" Red Black Blue Gold\")\n", "print '%s' %(\" 2 0 6 (+/-)5%\")\n", "red=2. #red value\n", "blk=0 #black value\n", "blu=6. #blue value\n", "gld=5. #gold value\n", "value_res=(red*10.+blk)*10.**blu #value of resistor\n", "print '%s %.0f %s %.0f' %(\"\\n The value of resistor is\",value_res,\"ohm (+/-)\",gld)\n", "per_val=0.05*value_res\n", "pos_value_res=value_res+per_val #positive range of resistor\n", "neg_value_res=value_res-per_val #negative range of resistor\n", "print '%s %.0f %s %.0f %s ' %(\"\\n The value of resistor is\",neg_value_res*1e-6,\" Mohm and\",pos_value_res*1e-6,\"Mohm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Refer to the figure 1.52\n", "Hold the resistor as shown in the figure such that tolerance is on your extreme right.\n", "Now the value of the resistor is equal to\n", " Red Black Blue Gold\n", " 2 0 6 (+/-)5%\n", "\n", " The value of resistor is 20000000 ohm (+/-) 5\n", "\n", " The value of resistor is 19 Mohm and 21 Mohm \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 43" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the value of the resistor\n", "print '%s' %(\"With the help of colour coding table, one finds\")\n", "print '%s' %(\" 1st_Band 2nd_Band 3rd_Band 4th_Band\")\n", "print(\" Yellow Violet Orange Gold\")\n", "print '%s' %(\" 4 7 10**3 (+/-)5%\")\n", "yel=4. #yellow value\n", "vio=7. #violet value\n", "org=1e3 #orange value\n", "gld=5. #gold value in %\n", "val_res=(yel*10.+vio)*org\n", "print '%s %.2f %s %.0f' %(\"\\n The value of resistor is\",val_res*1e-3,\"kohm (+/-)\",gld)\n", "gld_ab=0.05 #absolute gold value\n", "per_val=gld_ab*val_res\n", "print '%s %.0f %s'%(\"\\n Now, 5%% of 47k_ohm =\",per_val, \"ohm\")\n", "range_high=val_res+per_val #higher range\n", "range_low=val_res-per_val #lower range\n", "print'%s %.2f %s %.2f %s %.2f %s %.2f %s'%(\"\\n\\n Thus resistance should be within the range\",val_res*1e-3, \"kohm(+/-)\",per_val*1e-3 ,\"Kohm\\n or between\",range_low*1e-3 ,\"kohm and\",range_high*1e-3, \"kohm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "With the help of colour coding table, one finds\n", " 1st_Band 2nd_Band 3rd_Band 4th_Band\n", " Yellow Violet Orange Gold\n", " 4 7 10**3 (+/-)5%\n", "\n", " The value of resistor is 47.00 kohm (+/-) 5\n", "\n", " Now, 5%% of 47k_ohm = 2350 ohm\n", "\n", "\n", " Thus resistance should be within the range 47.00 kohm(+/-) 2.35 Kohm\n", " or between 44.65 kohm and 49.35 kohm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the value of the resistor\n", "print '%s' %(\"The specification of the resistor from the color coding table is as follows\")\n", "print '%s' %(\" 1st_Band 2nd_Band 3rd_Band 4th_Band\")\n", "print '%s' %(\" Gray Blue Gold Silver\")\n", "print '%s' %(\" 8 6 10**(-1) (+/-)10%\")\n", "gray=8. #gray value\n", "blu=6. #blue value\n", "gld=10.**-1 #gold value\n", "sil=10. #silver value in %\n", "val_res=(gray*10.+blu)*gld\n", "print '%s %.2f %s %.2f' %(\"\\n The value of resistor is\",val_res, \"ohm (+/-)\",sil)\n", "sil_ab=0.1 #absolute gold value\n", "per_val=sil_ab*val_res\n", "print '%s %.2f %s' %(\"\\n Now, 10%% of 8.6 ohm =\",per_val,\" ohm\")\n", "range_high=val_res+per_val #higher range\n", "range_low=val_res-per_val #lower range\n", "print '%s %.2f %s %.2f %s %.2f %s %.2f %s' %(\"\\n\\n Obviously resistance should lie within the range\",val_res,\"ohm(+/-)\",per_val,\"ohm\\n or between\",range_high,\"ohm and\",range_low,\"ohm\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The specification of the resistor from the color coding table is as follows\n", " 1st_Band 2nd_Band 3rd_Band 4th_Band\n", " Gray Blue Gold Silver\n", " 8 6 10**(-1) (+/-)10%\n", "\n", " The value of resistor is 8.60 ohm (+/-) 10.00\n", "\n", " Now, 10%% of 8.6 ohm = 0.86 ohm\n", "\n", "\n", " Obviously resistance should lie within the range 8.60 ohm(+/-) 0.86 ohm\n", " or between 9.46 ohm and 7.74 ohm\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the load voltage and load current\n", "print '%s' %(\"Refer to the figure 1.53\")\n", "Vs=2. #supply voltage in V\n", "Rs=1. #resistance in ohm\n", "Is=Vs/Rs\n", "print '%s %.2f %s' %(\"\\n Current Is =\",Is,\" A \\n\")\n", "print '%s' %(\" Internal resistance remains the same but is now connected in parralel with the current sourceIS,as shown in Figure 1.51(a)\")\n", "print '%s' %(\" Now,we connect a load resistance R_L=1 ohm across the terminals of two representations ,and find I_L and V_L. From Figure 1.54(b) and using the current-divider concept,one obtains\")\n", "RL=1. #load resistance in ohm\n", "IL=Is*(Rs/(Rs+RL)) #load current using current-divider\n", "VL=IL*RL #load voltage\n", "print '%s %.0f %s' %(\"\\n Load voltage =\",VL,\"V\")\n", "print '%s %.0f %s' %(\"\\n Load current =\",IL,\"A \\n\")\n", "print '%s' %(\"From equation 53(b),using the voltage-divider concept,one obtains\")\n", "VD_vl=Vs*(RL/(RL+Rs)) #load voltage using voltage divider \n", "VD_il=VL/RL #load current\n", "print '%s %.0f %s' %(\"\\n Load voltage =\",VD_vl,\"V\")\n", "print '%s %.0f %s' %(\"\\n Load current =\",VD_il,\"A \\n\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Refer to the figure 1.53\n", "\n", " Current Is = 2.00 A \n", "\n", " Internal resistance remains the same but is now connected in parralel with the current sourceIS,as shown in Figure 1.51(a)\n", " Now,we connect a load resistance R_L=1 ohm across the terminals of two representations ,and find I_L and V_L. From Figure 1.54(b) and using the current-divider concept,one obtains\n", "\n", " Load voltage = 1 V\n", "\n", " Load current = 1 A \n", "\n", "From equation 53(b),using the voltage-divider concept,one obtains\n", "\n", " Load voltage = 1 V\n", "\n", " Load current = 1 A \n", "\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 45" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Calculate the percentage variation in current, current for two extreme values R_L\n", "print '%s' %(\"Refer to the figure 1.55\")\n", "print '%s' %(\"(a) R_L varies from 1 ohm to 10 ohm.\")\n", "print '%s' %(\"Currents for two extreme values of R_L are\")\n", "Vs=10. #supply voltage\n", "RL1=1. #resistance RL1\n", "Rs=100. #source resistance\n", "IL1=(Vs/(RL1+Rs))\n", "RL2=10.\n", "IL2=(Vs/(RL2+Rs))\n", "per_var_cur=((IL1-IL2)/IL1)*100.\n", "print '%s %.2f %s' %(\"\\n Percentage variation in current =\",per_var_cur,\"\\n\")#answer in the text book took a .3 decimal round off value\n", "print '%s' %(\" Now,load voltage for the two extreme values of R_L are\")\n", "VL1=IL1*RL1\n", "VL2=IL2*RL2\n", "per_var_vol=((VL2-VL1)/VL2)*100.\n", "print '%s %.2f %s' %(\"\\n Percentage variation in current =\",per_var_vol,\"\\n\")\n", "\n", "print '%s' %(\"(b) R_L varies from 1 k-ohm to 10 k-ohm(Figure 1.55(b))\")\n", "print '%s' %(\"Currents for the two extreme values R_L are\")\n", "RL11=1000.\n", "IL11=(Vs/(RL11+Rs))\n", "RL22=10000.\n", "IL22=(Vs/(RL22+Rs)) #mistake in book value\n", "per_var_cur11=((IL11-IL22)/IL11)*100.\n", "print '%s %.2f %s' %(\"\\n Percentage variation in current =\",per_var_cur11,\"\\n\") #mistake in book value\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Refer to the figure 1.55\n", "(a) R_L varies from 1 ohm to 10 ohm.\n", "Currents for two extreme values of R_L are\n", "\n", " Percentage variation in current = 8.18 \n", "\n", " Now,load voltage for the two extreme values of R_L are\n", "\n", " Percentage variation in current = 89.11 \n", "\n", "(b) R_L varies from 1 k-ohm to 10 k-ohm(Figure 1.55(b))\n", "Currents for the two extreme values R_L are\n", "\n", " Percentage variation in current = 89.11 \n", "\n" ] } ], "prompt_number": 3 } ], "metadata": {} } ] }