{ "metadata": { "name": "", "signature": "sha256:ddaa68fa50b83699f8a6f35deb059bff01c78a46802bd57850513a730bade48f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2-Solar Radiation and its Measurement" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1-pg 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex2.4.1.;Detremine local solar time and declination\n", "import math\n", "##The local solar time=IST-4(standard time longitude-longitude of location)+Equation of time correstion\n", "##IST=12h 30min;for the purpose of calculation we are writing it as a=12h,b=29 min 60sec;\n", "a=12.;\n", "b=29.60;\n", "##(standard time longitude-longitude of location)=82 degree 30min - 77 degree 30min;\n", "##for the purpose of calculation we are writing it as\n", "STL3=82.5-72.5;\n", "##Equation of time correstion: 1 min 01 sec\n", "##for the purpose of calculation we are writing it as\n", "c=1.01;\n", "##The local solar time=IST-4(standard time longitude-longitude of location)+Equation of time correstion\n", "LST=b-STL3-c;\n", "print'%s %.2f %s %.2f %s'%(\" The local solar time=\",a,\"\"and \"\",LST,\" in hr.min.sec\");\n", "##Declination delta can be obtain by cooper's eqn : delta=23.45*sin((360/365)*(284+n))\n", "n=170.;##(on June 19)\n", "##let\n", "a=(360./365.)*(284.+n)\n", "aa=(a*math.pi)/180.\n", "##therefore\n", "delta=23.45*math.sin(aa);\n", "print'%s %.2f %s'%(\"\\n delta=\",delta,\" degree\");\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The local solar time= 12.00 18.59 in hr.min.sec\n", "\n", " delta= 23.43 degree\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2-pg 59" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "##Ex2.4.2.;Calculate anglr made by beam radiation with the normal to a flat collector.\n", "gama=0.;##since collector is pointing due south.\n", "##For this case we have equation : cos_(theta_t)=cos(fie-s)*cos(delta)*cos(w)+sin(fie-s)*sin(delta)\n", "##with the help of cooper eqn on december 1,\n", "n=335.;\n", "##let\n", "a=(360./365.)*(284.+n);\n", "aa=(a*math.pi)/180;\n", "##therefore\n", "delta=23.45*math.sin(aa);\n", "print'%s %.2f %s'%(\" delta=\",delta,\" degree\");\n", "##Hour angle w corresponding to 9.00 hour=45 Degreew\n", "w=45.;##degree\n", "##let\n", "a=math.cos(((28.58*math.pi)/180.)-((38.58*math.pi)/180.))*math.cos(delta*math.pi*180**-1)*math.cos(w*math.pi*180**-1);\n", "b=math.sin(delta*math.pi*180**-1)*math.sin(((28.58*math.pi)/180.)-((38.58*math.pi)/180.));\n", "##therefore\n", "cos_of_theta_t=a+b;\n", "theta_t=math.acos(cos_of_theta_t)*57.3;\n", "print'%s %.2f %s'%(\"\\n theta_t=\",theta_t,\" Degree\");\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " delta= -22.11 degree\n", "\n", " theta_t= 44.73 Degree\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1-pg 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Ex2.7.1.;Determine the average values of radiation on a horizontal surface\n", "import math\n", "##Declination delta for June 22=23.5 degree, sunrice hour angle ws\n", "delta=(23.5*math.pi)/180;##unit=radians\n", "fie=(10*math.pi)/180;##unit=radians\n", "##Sunrice hour angle ws=acosd(-tan(fie)*tan(delta))\n", "ws=math.acos(-math.tan(fie)*math.tan(delta));\n", "print'%s %.2f %s'%(\" Sunrice hour angle ws=\",ws,\" Degree\");\n", "n=172.;##=days of the year (for June 22)\n", "##We have the relation for Average insolation at the top of the atmosphere\n", "##Ho=(24/%pi)*Isc*[{1+0.033*(360*n/365)}*((cos (fie)*cos(delta)*sin(ws))+(2*%pi*ws/360)*sin(fie)*sin(delta))]\n", "Isc=1353.;##SI unit=W/m^2\n", "ISC=1165.;##MKS unit=kcal/hr m^2\n", "##let\n", "a=24./math.pi;\n", "aa=(360.*172.)/365.;\n", "aaa=(aa*math.pi)/180.;\n", "b=math.cos(aaa);\n", "bb=0.033*b;\n", "bbb=1+bb;\n", "c=(10*math.pi)/180.;\n", "c1=math.cos(c);\n", "cc=(23.5*math.pi)/180;\n", "cc1=math.cos(cc);\n", "ccc=(94.39*math.pi)/180;\n", "ccc1=math.sin(ccc);\n", "c=c1*cc1*ccc1;\n", "d=(2*math.pi*ws)/360.;\n", "e=(10*math.pi)/180;\n", "e1=math.sin(e);\n", "ee=(23.5*math.pi)/180;\n", "ee1=math.sin(ee);\n", "e=e1*ee1;\n", "##therefoe Ho in SI unit\n", "Ho=a*Isc*(bbb*(c+(d*e)));\n", "print'%s %.2f %s'%(\"\\n SI UNIT->Ho=:\",Ho,\" W/m^2\");\n", "Hac=Ho*(0.3+(0.51*0.55))\n", "print'%s %.2f %s'%(\"\\n SI UNIT->Hac=\",Hac,\" W/m^2 day\");\n", "ho=a*ISC*(bbb*(c+(d*e)));\n", "print'%s %.2f %s'%(\"\\n MKS UNIT->Ho=\",ho,\" kcal/m^2\");\n", "hac=ho*0.58;\n", "print'%s %.2f %s'%(\"\\n MKS UNIT->Hac=\",hac,\" kcal/m^2 day\");\n", "\n", "##The values are approximately same as in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Sunrice hour angle ws= 1.65 Degree\n", "\n", " SI UNIT->Ho=: 9025.25 W/m^2\n", "\n", " SI UNIT->Hac= 5239.16 W/m^2 day\n", "\n", " MKS UNIT->Ho= 7771.19 kcal/m^2\n", "\n", " MKS UNIT->Hac= 4507.29 kcal/m^2 day\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }