{ "metadata": { "celltoolbar": "Raw Cell Format", "name": "", "signature": "sha256:1b9250434a66c555344f74813ca967ce998b1c86d33424d56ca71d7c748c63ce" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1: Interference" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7, Page number 1-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Given Data:\n", "i=30 #angle of incidence\n", "u=1.43 #Refractive index of a soap film\n", "lamda=6*10**-7 #wavelength of light\n", "n=1 #For minimum thickness\n", "\n", "#Calculations:\n", "#u=sin i/sin r #Snell's law .So,\n", "r=math.degrees(math.asin(math.sin(i)/u)) #angle of reflection\n", "\n", "#Now, condition of minima in transmitted system is\n", "#2ut*cos(r)=(2n-1)lam/2\n", "t=lamda/(2*2*u*math.cos(r)) #minimum thickness of film\n", "print\"Minimum thickness of film is \",t,\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum thickness of film is 1.09096619878e-07 m\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8, Page number 1-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#Given Data:\n", "\n", "lamda = 5893*10**-10 #Wavelength of light\n", "theta = 1 #assuming value of theta\n", "\n", "#We know, B=lam/(2*u*theta). Here u=1\n", "B = lamda/(2*theta) #fringe spacing\n", "n=20 #interference fringes\n", "\n", "#Calculations:\n", "#t=n*B*tan(theta)\n", "t = 20*B*theta #Thickness of wire\n", "print\"Thickness of wire is =\",t,\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thickness of wire is = 5.893e-06 m\n" ] } ], "prompt_number": 18 } ], "metadata": {} } ] }