{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11: Voltage Regulators" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.1, Page No. 414" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# op-amp series voltage regulator design\n", "\n", "import math\n", "#Variable declaration\n", "Vin_min = 18-3 # min input voltage specification\n", "Vin_max = 18+3 # max input voltage specification\n", "Vout = 9 # output voltage specification\n", "Iout_min = 10*10**-3 # min output current specification\n", "Iout_max = 50*10**-3 # max output current specification\n", "Vz = 5.6 # zener breakdown voltage\n", "Pzmax = 0.5 # Maximum power dissipation in zener\n", "\n", "#Calculations\n", "R1 = 10*10**3 # assumed\n", "R2 = R1/((Vout/Vz)-1)\n", "R3 = (Vin_min-Vz)/Iout_max\n", "Iz = (Vin_max-Vz)/R3\n", "Pd = Iz*Vz\n", "beta = 30 # assumed\n", "Ib = Iout_max/(beta+1)\n", "\n", "#Result\n", "print(\"Element values for designed circuit are as follows:\\nR1 = %d k-ohm\\nR2 = %.2f k-ohm\"%(R1/1000,R2/1000))\n", "print(\"R3 = %.3f k-ohm\\nIB = %.2f mA\"%(R3/1000,Ib*1000))\n", "#Answer for R3 is wrong in the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Element values for designed circuit are as follows:\n", "R1 = 10 k-ohm\n", "R2 = 16.47 k-ohm\n", "R3 = 0.188 k-ohm\n", "IB = 1.61 mA\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.2, Page No. 420" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Regulator using IC 723\n", "\n", "import math\n", "#Variable declaration\n", "Vout = 5 # Required output voltage\n", "Iout = 100*10**-3 # Required output current\n", "Vin_min = 15-(0.2*15) # Min input voltage\n", "Vin_max = 15+(0.2*15) # Max input voltage\n", "Isc = 150*10**-3 # Short circuit current requirement\n", "Vsense = 0.7 # short circuit voltage\n", "Vref = 7.15 # reference votage for IC 723\n", "Id = 1*10**-3 # potential divider current\n", "\n", "\n", "#Calculation\n", "Rsc = Vsense/Isc\n", "R1 = (Vref-Vout)/Id\n", "R1std = 2.2*10**3 \n", "R2 = R1std/((Vref/Vout)-1)\n", "R2std = 5.1*10**3 \n", "R3 = R1std*R2std/(R1std+R2std)\n", "R3std = 1.5*10**3 \n", "\n", "#Result\n", "print(\"R1 = %.3f k-ohm\\t We use %.1f k-ohm as standard resistor.\"%(R1/1000,R1std/1000))\n", "print(\"R2 = %.3f k-ohm\\t We use %.1f k-ohm as standard resistor.\"%(R2/1000,R2std/1000))\n", "print(\"R3 = %.3f k-ohm\\t We use %.1f k-ohm as standard resistor.\"%(math.floor((R3/1000)*1000)/1000,R3std/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R1 = 2.150 k-ohm\t We use 2.2 k-ohm as standard resistor.\n", "R2 = 5.116 k-ohm\t We use 5.1 k-ohm as standard resistor.\n", "R3 = 1.536 k-ohm\t We use 1.5 k-ohm as standard resistor.\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.3, Page No. 421" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Ic 723 based positive voltage regulator\n", "\n", "import math\n", "#Variable declaration\n", "Vout = 12.0 # output voltage\n", "Il = 500*10**-3 # load current\n", "Isc = 600*10**-3 # short circuit current\n", "Vref = 7.0 # IC 723 reference voltage \n", "Vsense = 0.6 # voltage at short circuit\n", "\n", "#Calculation\n", "R1 = 4.7*10**3 # assumed\n", "R2 = Vref*R1/(Vout-Vref)\n", "R2std = 6.8*10**3 \n", "Rsc = Vsense/Isc\n", "R3 = R2std*R1/(R2std+R1)\n", "Psc = Isc**2*Rsc*1000\n", "I = Vout/(R1+R2std)\n", "I= math.floor(I*10**6)/10**6\n", "P1 = I**2*R1*1000\n", "P2 = I**2*R2std*1000\n", "\n", "#Result\n", "print(\"R1 = %.1f k-ohm\\nR2 = %.2f k-ohm = %.1f k-ohm(standard value)\\nRsc = %.1f ohm\"%(R1/1000,R2/1000,R2std/1000,Rsc))\n", "print(\"\\nPower wattage:\\nPsc = %.0f mW\\nP1 = %.3f mW\\nP2 = %.3f mW\"%(Psc,math.floor(P1*1000)/1000,P2))\n", "print(\"Hence, both R1 and R2 may be selected safely of 1/16th watt power rating.\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R1 = 4.7 k-ohm\n", "R2 = 6.58 k-ohm = 6.8 k-ohm(standard value)\n", "Rsc = 1.0 ohm\n", "\n", "Power wattage:\n", "Psc = 360 mW\n", "P1 = 5.112 mW\n", "P2 = 7.397 mW\n", "Hence, both R1 and R2 may be selected safely of 1/16th watt power rating.\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.4, Page No. 426" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Regulator design using IC 723(refer to fig. 11.26)\n", "\n", "import math\n", "#Variable declaration\n", "Vout = 6 # output voltage\n", "Il = 1 # load current\n", "Isc = 0.250 # short circuit \n", "Vref = 7 # reference voltage\n", "Vbe = 0.7 # base-emitter junction voltage\n", "\n", "#Calculations\n", "R1 = 2.7*10**3 # assumed\n", "R2 = Vout*R1/(Vref-Vout)\n", "kRsc = Vbe/Isc\n", "k =1-(((Il-Isc)*kRsc)/Vout)\n", "R4 = 10*10**3 # assumed \n", "R3 = (1-k)*R4\n", "Rsc = kRsc/k\n", "R = (R1*R2)/(R1+R2)\n", "\n", "#Result\n", "print(\"R1 = %.1f k-ohm\\nR2 = %.1f k-ohm\\nR3 = %.1f k-ohm\\nR4 = %.1f k-ohm\\nR = %.2f k-ohm\"%(R1/1000,R2/1000,R3/1000,R4/1000,R/1000))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R1 = 2.7 k-ohm\n", "R2 = 16.2 k-ohm\n", "R3 = 3.5 k-ohm\n", "R4 = 10.0 k-ohm\n", "R = 2.31 k-ohm\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.5, Page No.432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Current source design using IC7812\n", "\n", "import math\n", "#Variable declaration\n", "RL = 25.0 # load resistance\n", "P = 10.0 # power \n", "I = 0.5 # current required\n", "V = 12.0 # rated voltage\n", "\n", "#Calculations\n", "R = V/I\n", "Vout = V+(I*RL)\n", "Vin = Vout+2\n", "\n", "#Result\n", "print(\"R = %d ohm\\nVout = %.1f V\\nVin = %.1f V\"%(R,Vout,Vin))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R = 24 ohm\n", "Vout = 24.5 V\n", "Vin = 26.5 V\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.6, Page NO. 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# min and max voltage of regulator(refer fig.11.34)\n", "\n", "import math\n", "#variable declaration\n", "Iq = 10*10**-3 # quiescent current\n", "Vreg = 15.0 # regulated output voltage\n", "R2 = 0 # min value of potentiometer\n", "R1 = 40.0 # R1 resistor\n", "\n", "#Calculations\n", "Vout = (1+(R2/R1))*Vreg+(Iq*R2)\n", "\n", "#Result\n", "print(\"Vout = %d V\"%Vout)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vout = 15 V\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.7, Page No. 432" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# current source using 7805\n", "\n", "import math\n", "#Variable declaration\n", "Il = 0.2 # required load current\n", "RL = 22.0 # load resistance\n", "P = 10.0 # required power\n", "Iq = 4.2*10**-3 # quiescent current\n", "Vr = 5 # regulated output voltage\n", "\n", "#Calculation\n", "R = Vr/(Il-Iq)\n", "Vout = Vr+Il*RL\n", "Vin = Vout+2\n", "\n", "#Result\n", "print(\"R = %f ohm\\nVout = %.1f V\\nVin = %.1f V\"%(R,Vout,Vin))\n", "# Answer for R is wrong in the book" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R = 25.536261 ohm\n", "Vout = 9.4 V\n", "Vin = 11.4 V\n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.8, Page No.435" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Regulated outpuut voltage(refer fig. 11.38)\n", "\n", "import math\n", "#Variable declaration\n", "R1 = 220.0 # resistance R1\n", "R2 = 1500.0 # Resistance R2\n", "Iadj = 100*10**-6 # adj. current\n", "\n", "\n", "#Calculartions\n", "Vout = (1.25*(1+(R2/R1)))+(Iadj*R2)\n", "\n", "#Result\n", "print(\"Vout = %.2f V\"%Vout)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Vout = 9.92 V\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.9, Page No. 435" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Output voltage range\n", "\n", "import math\n", "#Variable declaration\n", "R1 = 820.0 # resistance R1\n", "R2min = 0 # min potentiometer resistance\n", "R2max = 10*10**3 # max potentiometer resistance\n", "Iadj = 100*10**-6 # adj. current\n", "\n", "#calculations\n", "Vmin = 1.25*(1+(R2min/R1))+(Iadj*R2min)\n", "Vmax = 1.25*(1+(R2max/R1))+(Iadj*R2max)\n", "\n", "#Result\n", "print(\"The output can be varied in the range %.2f V to %.2f V\"%(Vmin,Vmax))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The output can be varied in the range 1.25 V to 17.49 V\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "example 11.10, Page No. 436" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Maximum load current\n", "\n", "import math\n", "#Variable declaration\n", "Vbe = 1.0 # base emitter junction voltage\n", "beta = 15.0 # current gain\n", "R1 = 7.0 # resistance R1\n", "Iout = 1.0 # max output current from IC \n", "#Calculations\n", "Il = ((1+beta)*Iout) - beta*(Vbe/R1)\n", "Il = math.floor(Il*100)/100\n", "#Result\n", "print(\"IC which can supply maximum 1A can supply maximum load of %.2f A, with the help of the current boosting arrangements\"%Il)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "IC which can supply maximum 1A can supply maximum load of 13.85 A, with the help of the current boosting arrangements\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }