{ "metadata": { "name": "", "signature": "sha256:3942a48c51f6e66ddeb010a1a5acaeebd4c9f56b964a269d92588d67ccc10453" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2 : Introduction to operational amplifier" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.1 Page no. 88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "\n", "R1 = 10*10**3 #R1 input resistance \n", "Rf = 100*10**3 # Rf feedback resistance\n", "vi = float(1) #input voltage \n", "RL = 25*10**3\n", "#calculating the values \n", "\n", "i1 = float((vi/R1)*10**3) # input resistace id the ratio of input voltage to the input resitance \n", "vo = float(-(Rf/R1)*vi) # finding the output voltage \n", "iL = float((abs(vo)/RL)*10**3) # calculating the load current \n", "io = float((i1+iL)) # calculating the output current which is equal to the sum of input current and load current\n", "\n", "#printing the values \n", "\n", "print \"The input current i1 =\",i1,\"mA\"\n", "print \"The output voltage vo =\",vo,\"V\"\n", "print \"The load current iL =\",iL,\"mA\"\n", "print \"The output current io =\",io,\"mA\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The input current i1 = 0.1 mA\n", "The output voltage vo = -10.0 V\n", "The load current iL = 0.4 mA\n", "The output current io = 0.5 mA\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.2 Page no.89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "\n", "ACL = 5 # Gain of the amplifier\n", "R1 = 10*10**3 # input resisitance in ohms \n", "\n", "# calculations\n", "\n", "Rf = (5-1) * R1 # calculating the resistance of feedback resistor \n", "\n", "# printing the values \n", "\n", "print \"The value of feedback resistor = \", (Rf/10**3),\"kohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of feedback resistor = 40 kohms\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.4 Page no.92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Given Data\n", "\n", "R1 = 5*10**3\n", "Rf = 20*10**3\n", "vi = 1 \n", "RL = 5*10**3\n", "\n", "# calculating the values \n", "vo = float((1+(Rf/R1))*vi) \n", "ACL = int(vo/vi)\n", "iL = int((vo/RL)*10**3)\n", "i1 = float(((vo - vi)/Rf))*(10**3)\n", "io = iL+i1\n", " \n", " \n", "# printing the values\n", "print \"Output voltage vo = \",vo,\"V\"\n", "print \"Gain ACL = \",ACL\n", "print \"Load current iL = \",iL,\"mA\"\n", "print \"The value of i1 = \",i1,\"mA\"\n", "print \"Output current io = \", io,\"mA\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Output voltage vo = 5.0 V\n", "Gain ACL = 5\n", "Load current iL = 1 mA\n", "The value of i1 = 0.2 mA\n", "Output current io = 1.2 mA\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.5 Page No.94" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given Data\n", "import math\n", "Beta = 200\n", "ICQ = 100*10**-6\n", "ADM = 100\n", "CMRR = 80\n", "\n", "# finding the solution \n", "# for VT =25 milli volt \n", "VT = 25*10**-3\n", "gm = float(ICQ/VT)\n", "Rc = (ADM/gm) \n", "CMRR = 10**(80/20) # log inverse is equal to powers of 10\n", "RE = float((CMRR-1)/gm)\n", "x = Decimal((RE/10**6))\n", "\n", "# printing the values \n", "\n", "print \" The value of gm =\",int(math.ceil((gm*10**3))),\"mMho\" #converting the answer into milli Mho\n", "print \" The value of Rc =\",int((Rc/10**3)),\"kohm\" #converting the answer into kohm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The value of gm = 4 mMho\n", " The value of Rc = 25 kohm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.6 Page no. 95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data \n", "\n", "gm = 4*10**-3\n", "RC = 125*10*3\n", "RE = 1.25*10**3\n", "beta0 = 200\n", "\n", "# calculating the values\n", "\n", "rpi = beta0/gm # value is in ohms \n", "ADM =-500 # Given Value\n", "ACM = -((200*RC)/(402*RE)+rpi)*10**-6\n", "print \"ACM is =\",round(ACM,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ACM is = -0.05\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.9 Page No.63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from fractions import Fraction \n", "# Given data\n", "\n", "beta0 = 100\n", "IQ = 5*10**-4\n", "RC = 10*10**3\n", "RE = 150\n", "VT = 25*10**-3 \n", "\n", "# calculations \n", "\n", "ICQ = float(IQ/2)\n", "gm = float(ICQ / VT)\n", "rpi = beta0/gm\n", "# calculaing the gain in Differential mode\n", "ADM = ((0.5)*(beta0*RC))/(rpi+((1+beta0)*RE))\n", "# To get the differentila mode gain multiply the value by 2\n", "ADM2 = (ADM*2)\n", "\n", "# print the values \n", "\n", "print \"ICQ value is =\",ICQ*10**3,\"mA\"\n", "print \"gm value is =\",Fraction(gm).limit_denominator(100),\"Mho\" \n", "print \"rpi value is =\",int(rpi/10**3),\"kilo Ohm\"\n", "print \"THe gain is =\",int(math.ceil(ADM2)),\"V/V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ICQ value is = 0.25 mA\n", "gm value is = 1/100 Mho\n", "rpi value is = 10 kilo Ohm\n", "THe gain is = 40 V/V\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.8 Page no.97" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "import math\n", "I0 = 10*10**-6\n", "VCC =10\n", "VBE = 0.7\n", "beta = 125\n", "VT = 25*10**-3\n", "\n", "# Solution of the problem is \n", "Iref = 10**-3 # Assumption\n", "\n", "R1 = (VCC - VBE)/Iref\n", "# Finding the value RE from the equation 2.74\n", "RE = (VT/(1+(1/beta)*I0))*math.log(Iref/I0)\n", "\n", "# printing the values \n", "\n", "print \"The value of R1 =\",R1/10**3,\"Kilo Ohms\"\n", "print \"The value of RE =\",round(RE*100,1),\"Kilo Ohms\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The value of R1 = 9.3 Kilo Ohms\n", "The value of RE = 11.5 Kilo Ohms\n" ] } ], "prompt_number": 13 } ], "metadata": {} } ] }