{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3 - Semiconductors" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.1 Pg 59" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "l = 45.6 km\n", "J = 5.80e+05 A/m**2\n" ] } ], "source": [ "from __future__ import division\n", "from math import sqrt, pi\n", "R=1000#\n", "sigma=5.8*10**7#\n", "d=0.001#\n", "\n", "#l is length of the cu wire\n", "l=R*sigma*pi*(d*d/4)##R=l/(sigma*pi*(d*d/4))\n", "print \"l = %0.1f km\"%(l*10**-3)\n", "E=10*10**-3#\n", "J=sigma*E##current density\n", "print 'J = %0.2e A/m**2'%J" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.2 Pg 60" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n = 1.133e+29 /m**3\n", "J = 1.16e+06 A/m**2\n", "A = 3.14e-06 m**2\n", "I = 3.64 A\n", "V = 6.40e-05 m/s\n" ] } ], "source": [ "d=2*10**-3#\n", "sigma=5.8*10**7#\n", "mu=0.0032#\n", "E=20*10**-3#\n", "q=1.6*10**-19#\n", "n=sigma/(q*mu)##sigma=q*n*mu\n", "print 'n = %0.3e /m**3'%(n)\n", "J=sigma*E##current density\n", "print 'J = %0.2e A/m**2'%J\n", "A=pi*d*d/4##area of cross-section of wire\n", "print 'A = %0.2e m**2'%A\n", "I=J*A##current flowing in the wire\n", "print 'I = %0.2f A'%I\n", "V=mu*E##electron drift velocity\n", "print 'V = %0.2e m/s'%V\n", "#answer printed in the book is wrong" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.3 Pg 61" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 6.49e+07 S/m\n", "mu = 0.700 m**2/vs\n", "t = 3.980 ps\n" ] } ], "source": [ "p=1.54*10**-8#\n", "n=5.8*10**28#\n", "q=1.6*10**-19#\n", "sigma=1/p##p=1/sigma..conductivity\n", "print 'sigma = %0.2e S/m'%sigma\n", "mu=sigma/(q*n*10**-2)##mobility\n", "print 'mu = %0.3f m**2/vs'%mu\n", "m=9.1*10**-31#\n", "t=(m*mu)/q##relaxation time\n", "print 't = %0.3f ps'%(t*1e12)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.4 Pg 62" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 2.24 ohm-mu**-1\n", "sigma1 = 4.32e-04 ohm-m**-1\n" ] } ], "source": [ "mun=0.38#\n", "mup=0.18#\n", "n=2.5*10**19#\n", "a=0.13#\n", "b=0.05#\n", "n2=1.5*10**16#\n", "q=1.6*10**-19#\n", "sigma=q*n*(mun+mup)## intrinsic coductivity for germanium\n", "print 'sigma = %0.2f ohm-mu**-1'%sigma\n", "sigma1=q*n2*(a+b)##intrinsic coductivity for silicon\n", "print 'sigma1 = %0.2e ohm-m**-1'%sigma1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.5 Pg 62" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "e = 3.27e-04 ohm-m**-1\n", "h = 1.13e-04 ohm-m**-1\n" ] } ], "source": [ "n=1.41*10**16#\n", "mun=0.145#\n", "mup=0.05#\n", "q=1.6*10**-19#\n", "#sigma=q*n*(mun+mup)#\n", "e=q*n*mun##contribution by electrons\n", "h=q*n*mup##contribution by holes\n", "print 'e = %0.2e ohm-m**-1'%e\n", "print 'h = %0.2e ohm-m**-1'%h" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.6 Pg 63" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "R = 125.00 ohm\n", "rho = 0.025 ohm-m\n", "n = 1.92e+21 /m**3\n", "J = 2.00e+05 amp/m**2\n", "v = 650.00 m/sec\n" ] } ], "source": [ "q=1.60*10**-19#\n", "l=0.2*10**-3#\n", "a=0.04*10**-6#\n", "v=1#\n", "i=8*10**-3#\n", "mun=0.13#\n", "#concentration of free electrons\n", "R=v/i##resistance\n", "print 'R = %0.2f ohm'%R\n", "rho=(R*a)/l#\n", "print 'rho = %0.3f ohm-m'%rho\n", "sigma=1/rho##conductivity\n", "n=sigma/(q*mun)##concentration of free electrons\n", "print 'n = %0.2e /m**3'%n\n", "#Drift velocity\n", "j=i/a#\n", "print 'J = %0.2e amp/m**2'%j\n", "v=j/(n*q)#\n", "print 'v = %0.2f m/sec'%v" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.7 Pg 64" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 2.13 ohm-m**-1\n", "n = 2.3e+19 /m**3\n" ] } ], "source": [ "rho=0.47#\n", "q=1.6*10**-19#\n", "mun=0.39#\n", "mup=0.19#\n", "sigma=1/rho##conductivity of intrinsic semiconductor\n", "print 'sigma = %0.2f ohm-m**-1'%sigma\n", "n=sigma/(q*(mun+mup))##intrinsic carrier concentration of germanium\n", "print 'n = %0.1e /m**3'%n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.8 Pg 66" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n = 5.00e+20 /m**3\n", "SIGMA = 14.40 ohm-m**-1\n" ] } ], "source": [ "ND=10**21#\n", "NA=5*10**20#\n", "q=1.6*10**-19#\n", "mun=0.18#\n", "ND1=ND-NA##number of free electrons\n", "print 'n = %0.2e /m**3'%ND1\n", "SIGMA=ND1*q*mun##conductivity of silicon\n", "print 'SIGMA = %0.2f ohm-m**-1'%SIGMA" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.9 Pg 66" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 0.01 (ohm-m)**-1\n", "ND = 1.74e+17 atoms/m**3\n" ] } ], "source": [ "rho=100.0#\n", "q=1.6*10**-19#\n", "mun=0.36#\n", "sigma=1.0/rho#\n", "print 'sigma = %0.2f (ohm-m)**-1'%sigma\n", "ND= sigma/(q*mun)##donar concentration\n", "print 'ND = %0.2e atoms/m**3'%ND" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.10 Pg 66" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n = 1.76e+24 electrons/cm**3\n", "p = 2.64e+24 holes/cm**3\n" ] } ], "source": [ "ND=2*10**14#\n", "NA=3*10**14#\n", "ni=2.3*10**19#\n", "n=(ni**2)/NA#\n", "print 'n = %0.2e electrons/cm**3'%n\n", "p=(ni**2)/ND#\n", "print 'p = %0.2e holes/cm**3'%p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.11 Pg 67" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n = 3750\n", "p = 4.50e+11\n" ] } ], "source": [ "ND=5*10**8#\n", "NA=6*10**16#\n", "ni=1.5*10**10#\n", "n=(ni**2)/NA##number of electons\n", "p=(ni**2)/ND##number of holes\n", "print \"n = %0.f\"%n\n", "print \"p = %0.2e\"%p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.12 Pg 67" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 1.60 S/m\n", "l = 1.26 mm\n" ] } ], "source": [ "d=0.001#\n", "q=1.6*10**-19#\n", "ND=10**20#\n", "R=1000#\n", "mun=0.1#\n", "n=ND##number of free electrons\n", "sigma=q*n*mun##conductivity\n", "print 'sigma = %0.2f S/m'%sigma\n", "a=(1/sigma)*(1/(pi*(0.001**2)/4))\n", "l=R/a#\n", "print 'l = %0.2f mm'%(l*10**3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.13 Pg 67" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "p = 3.47e+17 /cm**3\n", "n = 1.80e+09 /cm**3\n", "n = 4.80e+14 /cm**3\n", "p = 4.69e+05 /cm**3\n" ] } ], "source": [ "sigma=100#\n", "rho=0.1#\n", "ni=1.5*10**10#\n", "mun=1300#\n", "mup=500#\n", "ni1=2.5*10**13#\n", "mun1=3800#\n", "mup1=1800#\n", "q=1.602*10**-19#\n", "#concentration of p type germanium\n", "p=sigma/(q*mup1)#\n", "print 'p = %0.2e /cm**3'%p\n", "n=(ni1**2)/p#\n", "print 'n = %0.2e /cm**3'%n\n", "#concentration of n type silicon\n", "n=rho/(mun*q)#\n", "print 'n = %0.2e /cm**3'%n\n", "p=(ni**2)/n#\n", "print 'p = %0.2e /cm**3'%p\n", "# ans in the textbook are wrong" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3.14 Pg 68" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ND = 4.41e+14 /cm**3\n", "p = 1.42e+12 /cm**3\n", "sigma = 0.27 (ohm-cm**)-1\n", "rho = 3.72 ohm-cm\n" ] } ], "source": [ "mun=3800#\n", "mup=1800#\n", "ni=2.5*10**13#\n", "Nge=4.41*10**22#\n", "q=1.602*10**-19#\n", "ND=Nge/10**8#\n", "print 'ND = %0.2e /cm**3'%ND\n", "p=(ni**2)/ND#\n", "print 'p = %0.2e /cm**3'%p\n", "n=ND#\n", "sigma=q*n*mun#\n", "print 'sigma = %0.2f (ohm-cm**)-1'%sigma\n", "rho=1/sigma#\n", "print 'rho = %0.2f ohm-cm'%rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.15 Pg 68" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 4.45e-06 (ohm-cm)**-1\n", "rho = 224690.83 ohm-cm\n", "ND = 9.92e+14 /cm**3\n", "p = 2.33e+05 /cm**3\n", "sigma = 0.21 (ohm-cm)**-1\n", "rho = 4.67 ohm-cm\n" ] } ], "source": [ "Nsi=4.96*10**22#\n", "ni=1.52*10**10#\n", "q=1.6*10**-19#\n", "mun=1350#\n", "mup=480#\n", "#resistivity of intrinsic silicon\n", "sigma=q*ni*(mun+mup)\n", "print 'sigma = %0.2e (ohm-cm)**-1'%sigma\n", "rho=1/sigma#\n", "print 'rho = %0.2f ohm-cm'%rho\n", "#resistivity of doped silicon\n", "ND=Nsi/(50*10**6)#\n", "print 'ND = %0.2e /cm**3'%ND\n", "n=ND#\n", "p=(ni**2)/n#\n", "print 'p = %0.2e /cm**3'%p\n", "sigma=q*n*mun#\n", "print 'sigma = %0.2f (ohm-cm)**-1'%sigma\n", "rho=1/sigma#\n", "print 'rho = %0.2f ohm-cm'%rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3.16 Pg 69" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 4.40e-04 ohm-m**-1\n", "sigma = 38.45 ohm-m**-1\n", "sigma34 = 7.48e-04 ohm-m**-1\n" ] } ], "source": [ "mup=0.048#\n", "mun=0.135#\n", "q=1.602*10**-19#\n", "Nsi=5*10**28#\n", "ni=1.5*10**16#\n", "sigma=q*ni*(mun+mup)#\n", "print 'sigma = %0.2e ohm-m**-1'%sigma\n", "NA=Nsi/10**7#\n", "P=NA#\n", "n=ni**2/P#\n", "sigma=q*P*mup#\n", "print 'sigma = %0.2f ohm-m**-1'%sigma\n", "alpha=0.05#\n", "T=34-20#\n", "sigma20=0.44*10**-3#\n", "sigma34=sigma20*(1+alpha*T)#\n", "print 'sigma34 = %0.2e ohm-m**-1'%sigma34" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.17 Pg 71" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "DP = 4.40e+01 m**2/s\n", "Dn = 9.31e+01 m**2/s\n" ] } ], "source": [ "mun=3600#\n", "mup=1700#\n", "k=1.38*10**23#\n", "T=300#\n", "DP=mup*(T/11600)##answer given in the book is wrong\n", "print 'DP = %0.2e m**2/s'%DP\n", "Dn=mun*(T/11600)##answer given in the book is wrong\n", "print 'Dn = %0.2e m**2/s'%Dn" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.18 Pg 74" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mu = 1000.00 cm**2/volt-sec\n" ] } ], "source": [ "RH=160#\n", "rho=0.16#\n", "mun=(1/rho)*RH#\n", "print 'mu = %0.2f cm**2/volt-sec'%mun" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex 3.19 Pg 77" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n = 7.50e+21 /m**3\n" ] } ], "source": [ "I=50#\n", "B=1.2#\n", "t=0.5*10**-3#\n", "Vh=100#\n", "q=1.6*10**-19#\n", "n=(B*I)/(Vh*q*t)#\n", "print 'n = %0.2e /m**3'%n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3.20 Pg 77" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "n = 3.12e+21 /m**3\n" ] } ], "source": [ "rho=20*10**-2#\n", "mu=100*10**-4#\n", "q=1.6*10**-19#\n", "n=1/(rho*q*mu)#\n", "print 'n = %0.2e /m**3'%n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3.21 Pg 77" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mu = 0.04 m**2/V-s\n", "n = 1.71e+22 /m**3\n" ] } ], "source": [ "Rh=3.66*10**-4#\n", "rho=8.93*10**-3#\n", "mu=Rh/rho#\n", "print 'mu = %0.2f m**2/V-s'%mu\n", "q=1.6*10**-19#\n", "\n", "n=1/(q*Rh)#\n", "print 'n = %0.2e /m**3'%n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ex3.22 Pg 77" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigma = 111.11 S/m\n", "RH = 2.70e-05 m**3*C\n" ] } ], "source": [ "rho=9*10**-3#\n", "mup=0.003#\n", "sigma=1/rho#\n", "print 'sigma = %0.2f S/m'%sigma\n", "RH= mup/sigma#\n", "print 'RH = %0.2e m**3*C'%RH" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }