{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2 Electric Fields" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_5 pgno:65" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum field = V/m per volt 42064315640.1\n" ] } ], "source": [ "#Chapter 2, Example 5, page 65\n", "#Calculate the maximum field at the sphere surface\n", "#Calulating Field at surface E based on figure 2.31 and table 2.3\n", "from math import pi\n", "Q1 = 0.25\n", "e0 = 8.85418*10**-12 #Epselon nought\n", "RV1= ((1/0.25**2)+(0.067/(0.25-0.067)**2)+(0.0048/(0.25-0.067)**2))\n", "RV2= ((0.25+0.01795+0.00128)/(0.75-0.067)**2)\n", "RV= RV1+RV2\n", "E = (Q1*RV)/(4*pi*e0)\n", "print\"Maximum field = V/m per volt\",E\n", "\n", "#Answers vary due to round off error\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_6 pgno:66" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Chapter 2, Exmaple 6, page 66\n", "#calculation based on figure 2.32\n", "\n", "#(a)Charge on each bundle\n", "print\"Part a\\t\"\n", "req = (0.0175*0.45)**0.5\n", "print\"Equivalent radius = m \", req\n", "from math import log\n", "from math import pi\n", "V = 400*10**3 #Voltage\n", "H = 12. #bundle height in m\n", "d = 9. #pole to pole spacing in m\n", "e0 = 8.85418*10**-12 #Epselon nought\n", "Hd = ((2*H)**2+d**2)**0.5#2*H**2 + d**2\n", "Q = V*2*pi*e0/(log((2*H/req))-log((Hd/d)))\n", "q = Q/2\n", "print\"Charge per bundle = uC/m \",Q #micro C/m\n", "print\"Charge per sunconducter = uC/m \",q #micro C/m\n", "\n", "#(b part i)Maximim & average surface feild\n", "print\"\\tPart b\"\n", "print\"\\tSub part 1\\t\"\n", "r = 0.0175 #subconductor radius\n", "R = 0.45 #conductor to subconductor spacing\n", "MF = (q/(2*pi*e0))*((1/r)+(1/R)) # maximum feild\n", "print\"Maximum feild = kV/m \\t\",MF\n", "MSF = (q/(2*pi*e0))*((1/r)-(1/R)) # maximum surface feild\n", "print\"Maximum feild = kV/m \\t\",MSF\n", "ASF = (q/(2*pi*e0))*(1/r) # Average surface feild\n", "print\"Maximum feild = kV/m \\t\",ASF\n", "\n", "#(b part ii) Considering the two sunconductors on the left\n", "print\"\\tSub part 2\\t\"\n", "#field at the outer point of subconductor #1 \n", "drO1 = 1/(d+r)\n", "dRrO1 = 1/(d+R+r)\n", "EO1 = MF -((q/(2*pi*e0))*(drO1+dRrO1))\n", "print\"EO1 = kV/m \\t\",EO1\n", "#field at the outer point of subconductor #2 \n", "drO2 = 1/(d-r)\n", "dRrO2 = 1/(d-R-r)\n", "EO2 = MF -((q/(2*pi*e0))*(dRrO2+drO2))\n", "print\"EO2 = kV/m \\t\",EO2\n", "\n", "#field at the inner point of subconductor #1 \n", "drI1 = 1/(d-r)\n", "dRrI1 = 1/(d+R-r)\n", "EI1 = MSF -((q/(2*pi*e0))*(drI1+dRrI1))\n", "print\"EI1 = kV/m \\t\",EI1\n", "#field at the inner point of subconductor #2 \n", "drI2 = 1/(d+r)\n", "dRrI2 = 1/(d-R+r)\n", "EI2 = MSF -((q/(2*pi*e0))*(dRrI2+drI2)) \n", "print\"EI2 = kV/m \\t\",EI2\n", "\n", "#(part c)Average of the maximim gradient\n", "print\"\\tPart c\\t\"\n", "Eavg = (EO1+EO2)/2\n", "print\"The average of the maximum gradient = kV/m \\t\",Eavg\n", "\n", "\n", "#Answers might vary due to round off error\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_7 pgno:69" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Electric Feild = V/m \t30015596280.4\n" ] } ], "source": [ "#Chapter 2, Exmaple 7, page 69\n", "#Electric feild induced at x\n", "from math import pi\n", "e0 = 8.85418*10**-12 #Epselon nought\n", "q = 1 # C/m\n", "C = (q/(2*pi*e0))\n", "#Based on figure 2.33\n", "E = C-(C*(1./3.+1./7.))+(C*(1+1./5.+1./9.))+(C*(1./5.+1./9.))-(C*(1./3.+1./7.))\n", "print\"Electric Feild = V/m \\t\",E\n", "\n", "#Answers might vary due to round off error\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_8 pgno:70" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Thickness of graded design= cm 4.24264068712\n", "Curve = cm**2 62.4264068712\n", "V1 = cm**3 47402.906725\n", "Thickness of regular design = cm 14.684289433\n", "V2 = cm**3 861.944682812\n" ] } ], "source": [ "#Chapter 2, Exmaple 8, page 70\n", "#Calculate the volume of the insulator\n", "#Thinkness of graded design\n", "from math import e\n", "from math import pi\n", "V = 150*(2)**0.5\n", "Ebd = 50\n", "T = V/Ebd\n", "print\"\\nThickness of graded design= cm \",T\n", "#Based on figure 2.24\n", "r = 2 # radius of the conductor\n", "l = 10 #length of graded cylinder; The textbook uses 10 instead of 20\n", "zr = l*(T+r)\n", "print\"Curve = cm**2 \",zr\n", "#Volume of graded design V1\n", "V1 = 4*pi*zr*(zr-r)\n", "print\"V1 = cm**3 \",V1 #Unit is wrong in the textbook\n", "#Thickness of regular design as obtained form Eq.2.77\n", "pow = V/(2*Ebd)\n", "t = 2*(e**pow-1)\n", "print\"Thickness of regular design = cm \",t\n", "#Volume of regular design V2\n", "V2 = pi*((2+t)**2-4)\n", "print\"V2 = cm**3 \",V2#unit not mentioned in textbook\n", " \n", "#Answers may vary due to round off error\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2_11 pgno:75" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The values of Phi2 and Phi4 are: [[ -3.6568 326.5 ]\n", " [ 261.92857143 -4.37537287]]\n" ] } ], "source": [ "#Chapter 2, Exmaple 11, page 75\n", "#Calculate the potential within the mesh\n", "#Based on figure 2.38(b)\n", "#equations are obtained using Eq.2.46\n", "import numpy\n", "from numpy import linalg\n", "A1 = 1/2*(0.54+0.16)\n", "A2 = 1/2*(0.91+0.14)\n", "S = numpy.matrix([[0.5571, -0.4571, -0.1],[-0.4751, 0.828, 0.3667],[-0.1, 0.667, 0.4667]])\n", "#By obtaining the elements of the global stiffness matrix(Sadiku,1994)\n", "#and by emplying the Eq.2.49(a)\n", "S1 = numpy.matrix([[1.25, -0.014],[-0.014, 0.8381]])\n", "S2 = numpy.matrix([[-0.7786, -0.4571],[-0.4571, -0.3667]])\n", "Phi13 = numpy.matrix([[0], [10]])\n", "val1 = S2*Phi13\n", "Phi24 = val1/S1\n", "print\"The values of Phi2 and Phi4 are:\",Phi24\n", "\n", "#Answers may vary due to round of error \n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }