{ "metadata": { "name": "", "signature": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter6 - Oscilltions" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 6.1 - page 412" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi, sqrt\n", "# Given data\n", "R1= 50 # in kohm\n", "R1=R1*10**3 # in ohm\n", "R2=R1 # in ohm\n", "R3=R2 # in ohm\n", "C1= 60 # in pF\n", "C1= C1*10**-12 # in F\n", "C2=C1 # in F\n", "C3=C2 # in F\n", "f= 1/(2*pi*R1*C1*sqrt(6)) \n", "print \"Frequency of oscilltions = %0.2f kHz\" %( f*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of oscilltions = 21.66 kHz\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 6.3 - page 416" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from numpy import pi\n", "# Given data\n", "f=2 # in kHz\n", "f=f*10**3 # in Hz\n", "# Let\n", "R= 10 # in kohm (As R should be greater than 1 kohm)\n", "R=R*10**3 # in ohm\n", "# Formula f= 1/(2*pi*R*C)\n", "C= 1/(2*pi*f*R) # in F\n", "C= C*10**9 # in nF\n", "# For Bita to be 1/3, Choose\n", "R4= R # in ohm\n", "R3= 2*R4 # in ohm\n", "print \"Value of C = %0.2f nF\" %C\n", "print \"Value of R3 = %0.f kohm\" %(R3*10**-3)\n", "print \"Value of R4 = %0.f kohm\" %(R4*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of C = 7.96 nF\n", "Value of R3 = 20 kohm\n", "Value of R4 = 10 kohm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 6.4 - page 417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "R1= 200 # in kohm\n", "R1=R1*10**3 # in ohm\n", "R2=R1 # in ohm\n", "C1= 200 # in pF\n", "C1= C1*10**-12 # in F\n", "C2=C1 # in F\n", "f= 1/(2*pi*R1*C1) # in Hz\n", "print \"Frequency of oscilltions = %0.2f kHz\" %(f*10**-3)\n", "\n", "# Note: Calculation to find the value of f in the book is wrong, so answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of oscilltions = 3.98 kHz\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 6.5 - page 417" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "L= 15 # in \u00b5H\n", "L= L*10**-6 # in H\n", "C1= .004 # in \u00b5F\n", "C1= C1*10**-6 # in F\n", "C2= .04 # in \u00b5F\n", "C2= C2*10**-6 # in F\n", "C= C1*C2/(C1+C2) # in F\n", "f= 1/(2*pi*sqrt(L*C)) # in Hz\n", "print \"Frequency of oscilltions = %0.1f kHz\" %(f*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of oscilltions = 681.5 kHz\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 6.7 - page 448" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "L= 0.01 # in H\n", "C= 10 # in pF\n", "C= C*10**-12 # in F\n", "f= 1/(2*pi*sqrt(L*C)) # in Hz\n", "print \"Frequency of oscilltions = %0.2f kHz\" %(f*10**-3)\n", "# Note: Calculation to find the value of f in the book is wrong, so answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of oscilltions = 503.29 kHz\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 6.8 - page 449" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "L= 0.8 # in H\n", "\n", "C= .08 # in pF\n", "C= C*10**-12 # in F\n", "C_M= 1.9 # in pF\n", "C_M= C_M*10**-12 # in F\n", "C_T= C*C_M/(C+C_M) # in F\n", "R=5 # in kohm\n", "f_s= 1/(2*pi*sqrt(L*C)) # in Hz\n", "print \"Series resonant frequency = %0.f kHz\" %(f_s*10**-3)\n", "# (ii)\n", "f_p= 1/(2*pi*sqrt(L*C_T)) # in Hz\n", "print \"Parallel resonant frequency = %0.f kHz\" %(f_p*10**-3)\n", "# Note: Calculation to find the value of parallel resonant frequency in the book is wrong, so answer in the book is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Series resonant frequency = 629 kHz\n", "Parallel resonant frequency = 642 kHz\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 6.9 - page 450" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Given data\n", "R1= 220 # in kohm\n", "R1=R1*10**3 # in ohm\n", "R2=R1 # in ohm\n", "C1= 250 # in pF\n", "C1= C1*10**-12 # in F\n", "C2=C1 # in F\n", "f= 1/(2*pi*R1*C1) \n", "print \"Frequency of oscilltions = %0.2f Hz\" %f" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of oscilltions = 2893.73 Hz\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }