{ "metadata": { "name": "", "signature": "sha256:896619f98735f380fd7764ca92373e979d96248275ce12cd21f86086d05b2351" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER02 : THE CIRCUIT ELEMENTS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E1a - Pg 21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#1a\n", "V = 1.; # voltage supply \n", "R = 10.; # resistance in ohms \n", "I = V/R # current flowing through R\n", "print '%s' %(\"a)\")\n", "print '%s %.f' %(\"voltage across the resistor (in volts)=\",V)\n", "print '%s %.2f' %(\"current flowing through the resistor (in amps) =\",I)\n", "\n", "#1b\n", "V = 1.; # voltage supply \n", "R1 = 10.; # first resistance in ohms \n", "R2 = 5.; # resistance of the second resistor \n", "Vr1 = V * (R1/(R1 + R2)); # voltage across R1\n", "Vr2 = V - Vr1; # voltage across R2\n", "Ir = Vr1/R1; # current flowing through R\n", "print '%s' %(\"b)\")\n", "print '%s %.2f' %(\"voltage across the first resistor (in volts)=\",Vr1)\n", "print '%s %.2f' %(\"voltage across the second resistor (in volts)=\",Vr2)\n", "print '%s %.2f' %(\"current flowing through the resistor (in amps) =\",Ir)\n", "\n", "#1c\n", "# c - a\n", "R1 = 10.; # first resistance in ohms\n", "R2 = 10.;\n", "I = 1.; # current source \n", "V = I*R1; # voltage across R\n", "print '%s' %(\"c - a)\")\n", "print '%s %.f' %(\"voltage across the resistor (in volts)=\",V)\n", "print '%s %.f' %(\"current flowing through the resistor (in amps) =\",I)\n", "# c - b\n", "Vr1 = I*R1; # voltage across R1\n", "Vr2 = I*R2; # voltage across R2\n", "Vr=Vr1+Vr2;\n", "print '%s' %(\"c - b)\")\n", "print '%s %.f' %(\"voltage across the resistor (in volts)=\",Vr)\n", "print '%s %.f' %(\"current flowing through the resistor (in amps) =\",I)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)\n", "voltage across the resistor (in volts)= 1\n", "current flowing through the resistor (in amps) = 0.10\n", "b)\n", "voltage across the first resistor (in volts)= 0.67\n", "voltage across the second resistor (in volts)= 0.33\n", "current flowing through the resistor (in amps) = 0.07\n", "c - a)\n", "voltage across the resistor (in volts)= 10\n", "current flowing through the resistor (in amps) = 1\n", "c - b)\n", "voltage across the resistor (in volts)= 20\n", "current flowing through the resistor (in amps) = 1\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E2 - Pg 25" ] }, { "cell_type": "code", "collapsed": false, "input": [ "R = 100.; # resistance in ohms\n", "I = 0.3; # current in amps \n", "P = I**2 * R; # power \n", "# power specification of the resistors available in the stock \n", "Pa = 5.;\n", "Pb = 7.5;\n", "Pc = 10.;\n", "\n", "if Pa > P :\n", " print '%s' %(\"we should select resistor a\")\n", "if Pb > P :\n", " print '%s' %(\"we should select resistor b\")\n", "if Pc > P :\n", " print '%s' %(\"we should select resistor c\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "we should select resistor c\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E3 - Pg 26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "L = 1.; # length of the copper wire in meters\n", "A = 1. * 10.**-4.; # cross sectional area of the wire in meter square \n", "rho = 1.724 * 10.**-8.; # resistivity of copper in ohm meter\n", "R = rho*L / A; # resistance of the wire in ohm \n", "\n", "print '%s %.2e' %(\"resistance of the wire (in ohms)=\",R) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "resistance of the wire (in ohms)= 1.72e-04\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E4 - Pg 27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# 1 inches = 0.0254meters\n", "# 1 foot = 0.3048 meters\n", "import math \n", "d = 0.1*0.0254; # diameter of the wire in meters\n", "L = 10.*0.3048; # length of the wire in meters \n", "rho = 1.724*10.**-8.; # resistivity of the wire in ohm-meter\n", "A = math.pi*(d/2.)**2.; # cross sectional area of the wire \n", "R = rho*L/A; # resistance of the wire in ohm \n", "print '%s %.2f' %(\"resistance of the wire (in ohm)=\",R)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "resistance of the wire (in ohm)= 0.01\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E5 - Pg 29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "import math\n", "import numpy as np\n", "from matplotlib import pyplot\n", "L = 0.1; # inductance of the coil in henry \n", "t1= np.linspace(0,0.1, num=101)\n", "t2= np.linspace(0.101,0.3, num=201)\n", "t3= np.linspace(0.301,0.6,num=301)\n", "t4= np.linspace(0.601,0.7,num=101)\n", "t5= np.linspace(0.701,0.9,num=201)\n", "# current variation as a function of time \n", "i1 = 100.*t1;\n", "i2 = (-50.*t2) + 15.;\n", "i3 = np.zeros(301)\n", "for i in range(0,301):\n", "\ti3[i] = -100.*math.sin(math.pi*(t3[i]-0.3)/0.3);\n", "\n", "i4 = (100.*t4) - 60.;\n", "i5 = (-50.*t5) + 45.;\n", "\n", "t = ([t1,t2,t3,t4,t5]);\n", "i = ([i1,i2,i3,i4,i5]);\n", "pyplot.plot(t1, i1);\n", "pyplot.plot(t2, i2);\n", "pyplot.plot(t3, i3);\n", "pyplot.plot(t4, i4);\n", "pyplot.plot(t5, i5);\n", "\n", "dt = 0.001;\n", "di1 = np.diff(i1);\n", "di2 = np.diff(i2);\n", "di3 = np.diff(i3);\n", "di4 = np.diff(i4);\n", "di5 = np.diff(i5);\n", "V1 =np.array((L/dt)*di1); # voltage drop appearing across the inductor terminals\n", "V2 =np.array((L/dt)*di2); # voltage drop appearing across the inductor terminals\n", "V3 =np.array((L/dt)*di3); # voltage drop appearing across the inductor terminals\n", "V4 = np.array((L/dt)*di4); # voltage drop appearing across the inductor terminals\n", "V5 = np.array((L/dt)*di5); # voltage drop appearing across the inductor terminals\n", "print(V2)\n", "Tv = np.linspace(0,0.899,num=900);\n", "V = []\n", "V.extend(V1)\n", "V.extend(V2)\n", "V.extend(V3)\n", "V.extend(V4)\n", "V.extend(V5)\n", "print(len(V))\n", "pyplot.plot(Tv, V)\n", "pyplot.show();" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[-4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975\n", " -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975 -4.975]\n", "900\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEACAYAAAC+gnFaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8HXW9//HXJ1uT0qQF2qbN0oUudBGlLS0UUYKiF1BW\nvYAg16soXpGqyI4gZZFNROCWRaHIXkRBLogbKPmJshRKgUIp3UizlaZL2iZt02zf3x9zWkJI0pNz\nZs6cZN7PxyOPnsyZM/PuSTKf811mxpxziIhIdGWEHUBERMKlQiAiEnEqBCIiEadCICIScSoEIiIR\np0IgIhJxSRcCM7vXzNaZ2ZIOy+aaWbWZLY59Hd3huUvMbIWZLTOzLya7fxERSY4lex6BmX0GaAQe\ncM4dEFt2BdDgnLu507pTgEeAmUAx8Bww0TnXnlQIERFJWNItAufcC0B9F09ZF8uOBxY451qccxXA\nSmBWshlERCRxQY4RzDGzN81svpkNiS0rAqo7rFON1zIQEZGQBFUI7gTGAgcCa4Ff9LCurnEhIhKi\nrCA26pyr2/XYzO4Bno59WwOUdli1JLbsI8xMxUFEJAHOua665XsUSIvAzEZ2+PZEYNeMoqeAU80s\nx8zGAhOAhV1twzmXVl9XXHFF6BmUqX/lUiZl8vsrUUm3CMxsAXA4MNTMqoArgDIzOxCv2+d94Lux\ng/tSM3sMWAq0Ame7ZNKLiEjSki4EzrmvdbH43h7Wvxa4Ntn9ioiIP3RmcZzKysrCjvAxyhS/dMyl\nTPFRpuAlfUJZEMxMPUYiIr1kZrh0GSwWEZG+Q4VARCTiVAhERCJOhUBEJOJUCEREIk6FQEQk4lQI\nREQiToVARCTiVAhERCJOhUBEJOJUCEREIk6FQEQk4lQIREQiToVARCTiVAhERCJOhUBEJOJUCERE\nIk6FQEQk4lQIREQiToVARCTiVAhERCJOhUBEJOJUCEREIk6FQEQk4lQIREQiToVARCTiki4EZnav\nma0zsyUdlu1jZs+a2XIz+5uZDenw3CVmtsLMlpnZF5Pdv4iIJMecc8ltwOwzQCPwgHPugNiyG4EN\nzrkbzewiYG/n3MVmNgV4BJgJFAPPAROdc+2dtumSzSUi3du5s5b6+ufYvPmfbN++jKamCpzbyYwZ\ni8nNLQk7niTIzHDOWW9fl3SLwDn3AlDfafFxwP2xx/cDJ8QeHw8scM61OOcqgJXArGQziMieOddG\nXd1jvPHGkbz66ifYuPGP5OdPY7/9fsb06S+SnT2U1tbNYceUEGQFtN1C59y62ON1QGHscRHwcof1\nqvFaBiISEOccdXULqKi4iuzsvSkpOZd99z2OzMzcj6xnlgWoJR5FQRWC3Zxzzsx6+u3Sb55IQLZt\ne5fly79HW1sjEyfewZAhR2DWXc+BAe3dPCf9WVCFYJ2ZjXDOfWBmI4G62PIaoLTDeiWxZR8zd+7c\n3Y/LysooKysLJqlIP+Sco6bmdtasuZLRo6+guPh7mGXu4VUZaGyubykvL6e8vDzp7SQ9WAxgZmOA\npzsNFm90zt1gZhcDQzoNFs/iw8Hi8Z1HhjVYLJK41tatLFv2TZqa1jB16m/JyxsX1+tee20a++8/\nn/z86QEnlKAkOlicdIvAzBYAhwNDzawK+ClwPfCYmZ0JVAAnAzjnlprZY8BSoBU4W0d8Ef80NVWz\nZMkxFBQcypQpj5CRMaAXrzbUUxtNSRcC59zXunnqyG7Wvxa4Ntn9ishHNTYuYcmSYygu/iGlpef1\nMBbQHXUNRVXgg8UiErzGxrd4663/YNy4myks7O6zWc+8wqHB4ihSIRDp4xobl/DWW//B+PG3Mnz4\nyUlsKQN1DUWTrjUk0odt374iVgRuSbIIAJi6hiJKhUCkj2puXs9bbx3NmDFXMXz4KUlvT11D0aVC\nINIHtbVtZ8mSYxk+/FSKir7t01bVNRRVKgQifYxzjmXL/pu8vPGMHXu1j1tW11BUabBYpI+pqrqJ\npqYKpk17IYEpot1T11B0qRCI9CH19f+guvpmpk9f2MuTxeKhrqGoUteQSB/R1FTNu++ezuTJD5Gb\nW7rnF/Sa0enWIBIRKgQifYBz7Sxb9g2Kir7P3nt/PpB9eF1DahFEkQqBSB9QVXUzzjUzevQlAe5F\nXUNRpTECkTTX0LCYqqobmT59YRyXkk6GuoaiSi0CkTTW1raDd989nfHjf0le3phA96WuoehSIRBJ\nYxUVP2WvvT5JYeHpKdibuoaiSl1DImlq69ZX+eCDB5k5c0mK9qiuoahSi0AkDbW3N/Pee2cyfvzN\n5OQMS8k+1TUUXSoEImmosvIGBgwYxfDhid1bIDHqGooqdQ2JpJlt296lpuY2Zsx43ddLSOyZuoai\nSi0CkTTinGPFijmMHn1ZQGcPd09dQ9GlQiCSRtav/z0tLXUUFX0/hL1nqEUQUeoaEkkTra2NrFp1\nHpMnP0RGRhh/mmoRRJVaBCJporLyZwwe/FmGDPlsKPtX11B0qUUgkga2b3+P2tq7U3jOQFfUNRRV\nahGIpIGVK89j9OhLGDBgZIgp1CKIKhUCkZDV1/+d7duXUVw8J9QcZjqPIKpUCERC5Fw7q1adz377\nXU9GRk7IaXQeQVSpEIiEaN26h8jIyGPYsK+EHQV1DUWXBotFQtLWtp333/8JU6b8NsVnEHdNXUPR\npRaBSEiqq2+hoOAQBg8+NOwoMeoaiqpAWwRmVgFsBdqAFufcLDPbB/gtMBqoAE52zm0OModIumlu\nrqOq6mamT3857CgdqGsoqoJuETigzDk3zTk3K7bsYuBZ59xE4O+x70UiZc2aayksPI2BA8eHHWU3\ndQ1FVyq6hjp3fh4H3B97fD9wQgoyiKSNpqYq1q17kNGjfxJ2lE7UNRRVqWgRPGdmr5nZd2LLCp1z\n62KP1wGFAWcQSStr1lxNUdFZ5OSk26++uoaiKuhZQ592zq01s2HAs2a2rOOTzjlnZl3+5s2dO3f3\n47KyMsrKyoLMKZIS27evZP36Jzj44OVhR/kYr2tILYK+pLy8nPLy8qS3Y86l5hOAmV0BNALfwRs3\n+MDMRgLPO+cmdVrXpSqXSCotXfp1Bg7cnzFjLg87yscsW3YmBQWzKSr6dthRJEFmhnOu13ORA+sa\nMrOBZpYfe7wX8EVgCfAU8I3Yat8Angwqg0g6aWx8m/r6Zykp+VHYUbqhrqGoCrJrqBD4Q+xEmSzg\nYefc38zsNeAxMzuT2PTRADOIpI2Kip8yatSFZGXlhx2lS+oaiq7ACoFz7n3gwC6WbwKODGq/Iumo\noWERW7cuZPLkh8OO0gNDXbLRpDOLRVKgouJKRo26mMzMvLCj9EBdQ1GlQiASsIaGxTQ0LGLkyPQe\nhFXXUHSpEIgEbM2aaygtvYDMzNywo+yBuoaiSoVAJECNjUvYuvVFiorOCjtKHNQ1FFUqBCIBWrPm\nGkpKziMzc2DYUfZIXUPRpUIgEpBt295l8+Zyior+J+wocVLXUFSpEIgEZM2an1FS8iOysgaFHSVO\nhloE0aRCIBKA7duXU1//V4qLvx92lLjpMtTRpUIgEoA1a66luHgOWVkFYUfpBXUNRZXuWSzisx07\n3mfjxj9y8MErw47SKxosji61CER8VlV1E0VFZ5GdPSTsKL2k6aNRpRaBiI+am+uoq1vArFnvhh0l\nAeoaiiq1CER8VFPzvwwbdnIa3n1sz9Q1FF1qEYj4pLW1kdrau5g27aWwoyRIXUNRpRaBiE/Wrr2b\nIUOOYODA8WFHSZC6hqJKLQIRH7S3N1NdfTNTp/4h7CgJU9dQdKlFIOKDurpHycubSEHBQWFHSYK6\nhqJKhUAkSc61U1l5I6NGXRR2lCQZzqlFEEUqBCJJ2rjxT2Rk5LD33l8IO0pSdImJ6FIhEElSVdUN\nlJZeiJmFHSVJ6hqKKhUCkSRs2fIiO3fWMGzYV8OO4gN1DUWVCoFIEiorb6C09HwyMvr+BDx1DUWX\nCoFIgrZtW8rWrS8zYsQ3w47iE3UNRZUKgUiCqqpuorj4HDIz88KO4hN1DUVV2rZn33jj86Huv60N\nGhpg61bYvNW4Y20mn5o0hpH5IynKL2LkIO/fovwihu81nMyMzFDzSmo1NVWzYcOTfe5S0z0xy2TD\nhidpano/1BztzrGltZVNra3Ut7aSc+/XmdY6g5yROQwoGkDOyBxyimKPR+SQkaPPs8mydDyl3Mzc\npk3PpWx/27fDypWwfPmHX+vXw377wcSJcMjss6jNPocde+WytnEttQ21u/+tbahl045NDBs4zCsQ\n+SMpGlS0u2B0LBoqGP3HypXnA22MH//LsKP4prl5HZs3/7+U7rPFtVPZ1MTqHU2839TEqh07qG3e\nyYicHPbLzWNG8+Pss/F4xq79Ojtrd9Jc28zOtd6/zWubaV7XTNbgrI8WhwgXDDPDOdfr6WtpWwiC\nytXQAIsXw2uvwaJF3r/V1fDJT8KMGR9+TZ4M2dnea15/fTbjxv2CwYMP7XKbLW0trNu2jrUNHy8S\nuwtHw1o27tiogtEPtLTU88or4znooDfIzS0NO06fsbO9nSWNjbzW0MDrsX+Xbd/O+Lw8DsrPZ/qg\nQRyUn8+nBg0iL9P7/V++/BwGDpxESck5XW7TtTta1rd8pDhEuWAkWgjStmvID1u3egf9RYs+/Kqq\nggMO8A72Rx4JF10EU6ZAVg/vREZGLu3tTd0+n52ZTUlBCSUFJT3m6a5gLKxZqILRh9TW3sm++35Z\nRaAHuw76i2IH/EWxg/6EvDxmxA763xox4iMH/a5kZubR3r6j2+ctw8gpzCGnMAcO7D5PdwVj29vb\n2PTspsgVjM5CKQRmdhRwC5AJ3OOcuyHZbW7dCm+84X3Cf/1179+qqg8/6cd70O9KRkbPv4zxUsHo\n+9radlBdfRsHHvj3sKOkje4O+rs+6c/Iz+fMOA76XdnTh7B4BVYwinI+UigGFA346LI+UjBSXgjM\nLBOYBxwJ1ACvmtlTzrm4b+nU0OAd7Lv7pP/5z8OFFyZ20O+KX7+M8epNwajbVvexbqhXa16ltrF2\nd8HYtGMTQwcO/UjB2P1YBaNXPvjgfgoKZrLXXlPDjhKKne3tvNXYuLtrp+NBf0Z+PgclcdDvSkZG\nHm1tjT4kj09UC0YYLYJZwErnXAWAmT0KHA90WQg6ftLvfNA/6KDkPunHy/tlTL5F4LfszGyKC4op\nLijucT0VDH8410ZV1U1MmvSbsKOkRE/dO9M7HPQ/OWgQA3046HclIyOPlpb1gWw7Gb0qGBtado9b\n7C4Y76RXwQijEBQDVR2+rwYO7rzS6ad/fCA3FQf9rnhdQ6lrEfgtlQWjOL+YL038Uor+Z6m1fv0T\n5OQMZ/Dgw8KOEojGFSt4uLGR1wYO9LV7Jxmpbo37zTKMnOE55AxPTcFIVBiFIK7pQI2Nc/nc52DY\nMPjc58ooKysLNFRPvF/G9GsR+C2RgtFxhtSrNa/i/jIffjTBm3fbjzjnqKy8gTFjLu8HF5frWsbc\nubx84okcNHt2KAf9LjOlaWvcb4kWjPLny3nhxRdoa2yjtaE18f2nevqomR0CzHXOHRX7/hKgveOA\ncZDTRxOxatUFZGcPY9SoC8OOkv6uugrefx9+07+6T+rr/86KFXOYOfPt2DV5+pnly+Gww2D1ahg0\nKOw0u61b9ygbNjzJ1KmPhh2lT0h0+mgYv9GvARPMbIyZ5QCnAE+FkCNufb15mlJz5sBTT0FFRdhJ\nfOVdXO6C/lkEAG64Ac45J62KAOx5+qj4I+VdQ865VjM7B/gr3vTR+b2ZMRSGjIw81q//HTt31oQd\nJe0NG/ZV9jnrLLjxRrjjjrDj+KKh4XW2bVtKYeHpYUcJRmUlPPkkrFgRdpKPycjIo7Hxdd5777th\nR0l7eXnjEn5t5M4sTkRTUyWbNv057Bhpr77+H+TkDGfC4Mth0iR4+20oKgo7VtLeeedUCgpmUlp6\nXthRgvGDH0Burle800xrayN1dY8CbWFHSXvZ2YUMH36iLjEh4aqu/l+2b3+PiRPnwbnnghncfHPY\nsZKyY8dqFi2axSGHrCYrqyDsOP6rq/OK9tKlMGJE2GkkSX1pjED6rQ7Xsz//fLjvPu/qfX1YVdVN\nFBWd1T+LAHiF+rTTVAQiToVAfONNq4wVguJiOPlk+GXfvTpnc3MddXWPUlLyw7CjBGPjRrj7bu80\nfIk0FQLxUacbm1x0EfzqV1BfH16kJFRX38bw4aeQk1MYdpRg3HYbnHQSjBoVdhIJmQqB+KjTPW/H\njoVjj4V580JLlKjW1gZqa++itPT8sKMEY8sWuP12uPjisJNIGlAhEN98pGtol0su8T55NjSEkilR\na9f+mr33PjKpKXlp7Y474OijYVw//f9Jr6gQiI+6uOft/vt7l4O9665wIiWgvX0nVVW/ZNSoi8KO\nEoxt2+CWW7wiLYIKgfiqU9fQLpde6s1O2dE3zhBdt+5h9tprKvn508KOEoxf/xo++1nv6o0iqBCI\nj7rsGgLv8rGzZsH8+SnP1FvOtVNZeWP/bQ00NcFNN8FPfhJ2EkkjKgTio24KAXgHnhtvhObmlCbq\nrQ0bniIrK58hQ44IO0ow7r3Xu6b7gT1c4lIiR4VAfJTx8TGCXWbNgsmT4YEHUhupF7xLTV/PqFEX\n989LTTc3exeXU2tAOlEhEN902zW0y2WXwXXXQWvi100P0pYt/6S1dRNDh54QdpRgPPSQN3h/8Mfu\nAyURp0IgPtpDIfjMZ7wzjh9Nz2vLV1ZeT2nphXi31e5nWlu9InzZZWEnkTSkQiA+6mL6aGeXXQbX\nXgvte1gvxRob36Sx8S1GjDgj7CjBeOwxGDnSmy0k0okKgfjGu2nLHq4a+4UveDc/eeKJlGSKV2Xl\njZSU/JCMjAFhR/FfWxtcc41aA9ItFQLx0R66hsC7NPXll3u3tEyTVsGOHavYtOmvFBX105uf/Pa3\nsPfeXhEW6YIKgfjIiOs+El/+MgwYAI8/HnykOFRWXk9x8dlkZQ0OO4r/2tq8onvllV4RFumCCoH4\nxusaiuNTvpl3cJo71ztQhaipqZL165/ov5eaXrAAhg3zLvMh0g0VAvFRHF1Duxx1FBQUwO9+F2ii\nPamq+jkjR36b7Ox9Q80RiNZWtQYkLioE4qM4u4YgLVoFO3euZd26hykt/XEo+w/cww97M4WO6Kdn\nSYtvVAjER0ZcXUO7HHmk122xYEFgiXpSVfULCgvP6J83nmlthauv9oqtWgOyByoE4pu4po9+9AVe\nt8WVV6b8bOPm5g188MG9lJZekNL9psyDD3p3Hjv88LCTSB+gQiA+6kXX0C5HHOGdbfzQQ8FE6kZ1\n9S0MG3YyubklKd1vSrS0eK2BK68MO4n0ESoE4qNeDBbvfkmsVXDVVd4BLAVaWjZTW3tn/73U9P33\nw377eZf0EImDCoH4Ju7po50dfrh34Lr/ft8zdaWm5n/Zd99jycsbm5L9pVRTk1dUr7467CTSh6gQ\niI8S6Bra5aqrvK+mJn8jddLauoWamtsYPfrSQPcTmjvugOnTYfbssJNIH6JCID5KoGtol0MPhWnT\n4PbbfU3UWVXVL9lnny8xcODEQPcTii1b4Prr4Wc/CzuJ9DEqBOKbPd6PYE+uvda7ccrmzb5l6qil\nZRM1NfMYM+byQLYful/8Ao45BqZODTuJ9DGBFAIzm2tm1Wa2OPZ1dIfnLjGzFWa2zMy+GMT+JSw9\n3KEsHlOnwrHHere0DEBV1S8YNuxE8vLGBbL9UK1b57Wm5s4NO4n0QVkBbdcBNzvnbu640MymAKcA\nU4Bi4Dkzm+iSOnpI+kiyRQDegezAA+H73/emlfqkuXk9tbV3cdBBr/u2zbRyzTVwxhkwZkzYSaQP\nCrJrqKvTGY8HFjjnWpxzFcBKYFaAGSSFku4aAigthW9/2/c58FVVNzJ8+Knk5o72dbtpYfVqeOQR\n3YtYEhZkIZhjZm+a2XwzGxJbVgRUd1inGq9lIP1Ckl1Du1x8MfzhD7BsWfLbAnbu/IC1a+f335lC\nl18Oc+Z4l+sQSUDCXUNm9iwwoounfgLcCVwV+/5q4BfAmd1sqsuPkHM79HWWlZVRVlaWYFJJHR9a\nBODdROXCC+HSS325k1ll5XUUFv4XAwb0w88cCxdCeTn86ldhJ5EQlJeXU15envR2LOF53/HuwGwM\n8LRz7gAzuxjAOXd97Lm/AFc4517p9BoXdC7xX33931mz5mcceOA/kt/Yjh2w//7eBek+/ekkNlPB\nokUzmDnzHQYM6OpzSx/mHBx2mNeV9s1vhp1G0oCZ4Zzr9VUGg5o1NLLDtycCS2KPnwJONbMcMxsL\nTAAWBpFBwtDLi871JC8PrrsOfvjDpG5pWVFxOcXF5/S/IgDevRy2b4f/+q+wk0gfF9QYwQ1m9paZ\nvQkcDpwL4JxbCjwGLAX+DJytj/79ifkzRrDLaadBTg488EBCL29oeIP6+ucoLT3fv0zpoqkJLroI\nfvlLyMwMO430cYFMH3XOdfsRxTl3LXBtEPuVcPkya+ijG4Rbb4Xjj4eTTvLuaNYLq1dfxOjRl5GV\nle9fpnRx663eNFuNnYkPdGax+MjnQgAwcyZ88YveWce9sGnTczQ1rWbkyLP8zZMO6urg5z8P7MQ7\niR4VAvGRT9NHO7vuOrjnHli1Kq7VnWtn9eoLGTv2WjIysv3PE7aLLoJvfAMmTAg7ifQTQZ1ZLBHk\ne9fQLiNHwnnneV9PPrnH1evqFmCWzbBhX/U/S9j+/W949ll4992wk0g/ohaB+CigQgBw7rnwzjvw\nzDM9rtbWto3Vqy9h3LibYoWpH2lthbPP9i4ul98Pxz0kNCoE4qOMxO9HsCe5uXDnnd41iLZt63a1\nysobKCg4lCFD+uHduebNg+HD4eSTw04i/YwKgfjG+wQe4PUDjzzSO7msm+sQ7dhRQU3N7Ywb9/Pg\nMoSltta7sNy8ed5sKhEfqRCIjwLsGtrl5pvhvvvgrbc+9tSqVedTUvIjcnNLg80Qhh//GM46yzvb\nWsRnKgTioyRuVRmvwkLvfrzf/e5Hzjiur3+exsZF/fPksf/7P1i0CC67LOwk0k+pEIhvEr55fW99\n5zuQkeHdnxdob29h5cofMG7cTWRm5gW//1TavNkbF5k/HwYODDuN9FOaPio+SkHXEHhF4N57vfGC\no46iOucJcnKKGDr0pOD3nWrnneedWf3Zz4adRPoxFQLxUQq6hnbZf3/4yU/Yce7XqLzofWbMWNj/\npos++yw89xy8/XbYSaSfU9eQ+MbrGkrdNQTdnDksP24lo9YcQl7efinbb0ps2gRnngl3361zBiRw\nKgTio4Cnj3ZSt/H3NE8ppOTHL/WvM22d8wbDTzrJu86SSMDUNSQ+Sl3XUHPzelat+jFTP/EEGdcs\ngVNPhZdf9u5j0Nfdd593m84HHww7iUSEWgTim1R1DTnnWL78exQWns7gwYd4d+iaNMkbWO3rVq6E\nCy7wbkafmxt2GokIFQLxUWq6hurqHmH79mWMGXN1bLcGv/41/PWv8Pjjge8/ME1NcMop8NOfwgEH\nhJ1GIkSFQHwUfNfQzp01rFx5LpMnP0BmZodPzIMHw6OPwve+F/flqtPOOefA+PEwZ07YSSRiVAjE\nR8GeR+BcO8uWfYvi4jnk50//+AozZ8IVV3jz7hsaAssRiHvugRdf9E4c62/TYCXtqRCIb4IeI6is\nvJG2tkZGjbqk+5XOPhtmz/Zu3JLETe9T6qWX4JJL4IknYNCgsNNIBKkQiI98vnl9B5s3v0B19S1M\nmfIoGRk9THYzg9tv927n2M1VStPKqlXeNNH77vMGvEVCoOmj4qNguoaam9fz7runMWnSb+K7smhO\njjdoPHs2lJZ6s4rS0aZNcMwxcPnl8KUvhZ1GIkyFQHwTRNdQe3sLS5eeQmHh19l336Pjf2FhoTeL\n6PDDYehQOOEEX3Mlbds2byzj2GO97iyREKkQiI/8bRE451ixYg6ZmXsxduw1vd/AhAnw9NNw9NHe\nrKIjjvAtW1J27IDjjoNx4+DGG8NOI6IxAvGTv2MENTXz2LLlX0ye/DBmmYltZMYM+N3vvPn5f/2r\nb9kS1tTktU5GjPBmCGXoT1DCp99C8Y139U9/WgTr1z9JZeW1HHDA02RlFSS3scMPhyefhDPOgKee\n8iVfQrZu9cYChgyB+++HzASLm4jPVAjER/6MEdTX/53ly8/igAP+SF7e2ORjARx6KDzzjHdTm7vu\n8mebvfHBB15B2n9/7/IRWeqVlfShQiA+Sr5raMuWl1m69GtMnfp78vNn+JQrZuZM+Ne/4JZb4Ec/\ngtZWf7ffnZdfhlmz4Ctf8aa2qiUgaUaFQHyTbNfQ5s3/5O23j2PSpPsYMiSgO3JNmOAdmN97z/uE\nXlERzH7Au5z0vHnewPC8ed49h3XWsKShhAuBmf2nmb1jZm1mNr3Tc5eY2QozW2ZmX+ywfIaZLYk9\nd2sywSUdJd41tHHjM7zzzleZMmUB++57jL+xOhsyxOsmOukk75P6/Pn+n4W8ejUceSQ88IB36Yjj\njvN3+yI+SqZFsAQ4Efhnx4VmNgU4BZgCHAXcYR/eQ/BO4Ezn3ARggpkdlcT+Je30/qJzzjmqq29j\n2bIzOeCAp9l7788HlK2TjAzvstV/+5t3nZ/Zs71LPSRr82bvk/+sWd601Rdf9C4kJ5LGEi4Ezrll\nzrnlXTx1PLDAOdfinKsAVgIHm9lIIN85tzC23gNAmp3lI8nw6n38n6zb2nbw3ntnsnbtfKZPf4mC\ngoODC9edAw+Ef//bO6nra1/zzjV45pnejx9UVnoFYOJEWLsWXn8dzj9fg8LSJwQxRlAEVHf4vhoo\n7mJ5TWy59Bvxdw1t3foKr702jfb2nUyb9m//ZgclIiPDu0jdihXefYKvvBKKi73bRT7yCCxfDs3N\nH67vHGzcCOXlcP31cNhhXkFpaPAGo+fPh1GjQvvviPRWjx9XzOxZYEQXT13qnHs6mEjSd+25a6i5\neQNr1lxNXd2jTJgwj+HD/zNF2eKQnQ1f/7r3tXKld1by73/vfdKvqfHuGJad7R3wc3PhE5/wTli7\n7DIoK9OU+rkNAAAHhklEQVQdxaTP6rEQOOe+kMA2a4COVwYrwWsJ1MQed1xe091G5s6du/txWVkZ\nZWVlCUSRVOqpa6i5eT21tXdRXX0rw4efwsyZS8jJGZ7agL0xfjyce673BV5XUWMjtLR4l4ruD/dG\nlj6vvLyc8vLypLdjyd5RysyeB853zi2KfT8FeASYhdf18xww3jnnzOwV4AfAQuAZ4Dbn3F+62KZL\n1U3QxT8tLZt45ZVxHHZYPQDNzXXU1/+DDRv+QH393xg69CuMGnUBAwfuH3JSkf7JzHDO9XqOcsIj\nWWZ2InAbMBR4xswWO+eOds4tNbPHgKVAK3B2h6P62cB9QB7wp66KgPRdZpm0tjawePFnaGqqoK2t\nkYKCQxk69EQmTryD7Ox9w44oIl1IukUQBLUI+q6NG/9CRkYuubml5Obuh+kEKpGUSbRFoEIgItJP\nJFoIdIkJEZGIUyEQEYk4FQIRkYhTIRARiTgVAhGRiFMhEBGJOBUCEZGIUyEQEYk4FQIRkYhTIRAR\niTgVAhGRiFMhEBGJOBUCEZGIUyEQEYk4FQIRkYhTIRARiTgVAhGRiFMhEBGJOBUCEZGIUyEQEYk4\nFQIRkYhTIRARiTgVAhGRiFMhEBGJOBUCEZGIUyEQEYk4FQIRkYhLuBCY2X+a2Ttm1mZm0zssH2Nm\nO8xscezrjg7PzTCzJWa2wsxuTTa8iIgkL5kWwRLgROCfXTy30jk3LfZ1dofldwJnOucmABPM7Kgk\n9p9S5eXlYUf4GGWKXzrmUqb4KFPwEi4Ezrllzrnl8a5vZiOBfOfcwtiiB4ATEt1/qqXjD16Z4peO\nuZQpPsoUvKDGCMbGuoXKzeyw2LJioLrDOjWxZSIiEqKsnp40s2eBEV08dalz7uluXlYLlDrn6mNj\nB0+a2dQkc4qISEDMOZfcBsyeB85zzr3e0/PAWuAfzrnJseVfAw53zv1PF69JLpSISEQ556y3r+mx\nRdALu3dsZkOBeudcm5ntB0wAVjvnNpvZVjM7GFgInAHc1tXGEvmPiIhIYpKZPnqimVUBhwDPmNmf\nY08dDrxpZouB3wHfdc5tjj13NnAPsAJvZtFfEo8uIiJ+SLprSERE+rZQzyw2s6PMbFnsBLOLulnn\nttjzb5rZtLAzmdkkM3vJzJrM7Lyg88SZ6fTY+/OWmf3bzD6ZBpmOj2VabGaLzOxzYWfqsN5MM2s1\ns5OCzhRPLjMrM7MtHU7CvCzsTB1yLTazt82sPOxMZnZ+h/doSexnOCTkTEPN7C9m9kbsffrvIPPE\nmWlvM/tD7O/vlbgm6zjnQvkCMoGVwBggG3gDmNxpnWOAP8UeHwy8nAaZhgEHAdfgDZKnw/s0Gxgc\ne3xUmrxPe3V4fABeV2ComTqs9w/gj8BX0uTnVwY8FXSWXmYaArwDlMS+Hxp2pk7rfxl4LuxMwFzg\nul3vEbARyAo508+By2OP94/nfQqzRTAL7+BQ4ZxrAR4Fju+0znHA/QDOuVeAIWZWGGYm59x659xr\nQEuAOXqb6SXn3JbYt68AJWmQaVuHbwcBG8LOFDMH+D2wPuA8vc2VygkS8WQ6DXjcOVcN4JxLl59f\nx3wL0iDTWqAg9rgA2Oicaw0502TgeQDn3HvAGDMb1tNGwywExUBVh++r+fgJZl2tE+RBLp5Mqdbb\nTGcCfwo0UZyZzOwEM3sX+DPwg7AzmVkx3h/NnbFFqRggi+e9csChsab8n8xsShpkmgDsY2bPm9lr\nZnZGGmQCwMwGAv8BPJ4Gme4GpppZLfAm8MM0yPQmcBKAmc0CRrOH46Zf00cTEe8fYedPSkH+8abj\nyHncmczsCOBbwKeDiwPEmck59yTeCYWfAR7Ea6aGmekW4GLnnDMzIzWfwuPJ9TreSZjbzexo4Elg\nYsiZsoHpwOeBgcBLZvayc25FiJl2ORb4l/twNmJQ4sl0KfCGc67MzMYBz5rZp5xzDSFmuh64NTZz\ncwmwGGjr6QVhFoIaoLTD96V89BIUXa1TElsWZqZUiytTbID4buAo51x9OmTaxTn3gpllmdm+zrmN\nIWaaATzq1QCGAkebWYtz7qmAMsWVq+NBwzn3ZzO7w8z2cc5tCisT3qfODc65HcAOM/sn8Cm8qd9h\nZdrlVILvFoL4Mh0K/AzAObfKzN7H+8DzWliZYr9P39r1fSzT6h63GuRgyx4GPbKAVXiDHjnsebD4\nEIIfBN1jpg7rziU1g8XxvE+j8AaQDkmjn904PpyePB1YFXamTuv/BjgpTd6rwg7v1SygIg0yTQKe\nwxucHIj3yXJK2D8/YDDegGxemvzsbgau6PBzrAb2CTnTYCAn9vg7wH173G7Qb+Ye/lNHA+/FDmKX\nxJZ9F+8ktF3rzIs9/yYwPexMeNdeqgK2APVAJTAo5Ez3xP44Fse+FqbB+3Qh8HYszwvAzLAzdVo3\nJYUgzvfq+7H36g3gRVJQ0OP82zsfb+bQEuAHaZLpG8Ajqfi5xfmzGwo8HTs+LQFOS4NMs2PPL8Ob\nGDF4T9vUCWUiIhGnW1WKiEScCoGISMSpEIiIRJwKgYhIxKkQiIhEnAqBiEjEqRCIiEScCoGISMT9\nf+iDjK55zTwcAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E7 - Pg 31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# a\n", "Ri = 1.; \n", "Rf = 39.;\n", "A = 10.**5.; # open loop gain of the op-amp\n", "G = A/(1. + (A*Ri/(Ri+Rf))); # actual voltage gain of the circuit \n", "print '%s' %(\"a\")\n", "print '%s %.2f' %(\"actual voltage of the circuit =\",G)\n", "\n", "# b\n", "G1 = 1 + (Rf/Ri); # voltage gain of the circuit with infinite open loop gain\n", "print '%s' %(\"b\")\n", "print '%s %.f' %(\"for ideal case the voltage gain =\",G1)\n", "\n", "# c\n", "er = ((G1 - G)/G)*100.; # percent error \n", "print '%s' %(\"c\")\n", "print '%s %.2f' %(\"percent error of the ideal value compared to the actual value=\",er)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a\n", "actual voltage of the circuit = 39.98\n", "b\n", "for ideal case the voltage gain = 40\n", "c\n", "percent error of the ideal value compared to the actual value= 0.04\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E8 - Pg 33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "G = 4.; # voltage gain of the circuit \n", "r = G -1.; # ratio of the resistances in the non-inverting op-amp circuit\n", "print '%s %.2f' %(\"Rf/Ri =\",r)\n", "# Result:\n", "# A suitable choice for R1 is 10K, Hence Rf = 30K\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rf/Ri = 3.00\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E9 - Pg 34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "G = 4.;\n", "r = G; # ratio of the resistances in the inverting op-amp circuit\n", "print '%s %.f' %(\"Rf/Ri\",r)\n", "# Result;\n", "# A suitable choice for Rf=30K and R1=7.5K\n", "# therefore input resistance R1 = 7.5K\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rf/Ri 4\n" ] } ], "prompt_number": 14 } ], "metadata": {} } ] }