{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6 IMPEDENCE MATCHING AND TUNNING" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.1 page no:284" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "inductor of first circuit in nH = 38.9848400617\n", "capacitor of the first circuit in pF = 0.9227738301\n", "inductor of second circuit in nH = 46.138691505\n", "capacitor of the second circuit in pF = 2.59898933745\n", "\"NOTE:−for above specific problem Rl>Zo, positive X implies inductor , negative X implies capacitor , positive B implies capacitor and negative B implies inductor .\"\n" ] } ], "source": [ "#Exa 6.1 program to design an L section matching network\n", "# example:−6.1,page no.−284.\n", "from math import pi,sqrt\n", "from sympy import I\n", "# program to design an L section matching network to match a series RC load.\n", "Zl=200-I*100; # load impedence .\n", "Rl=200;Xl=-100;f=500*10**6;Zo=100;\n", "B1=(Xl+sqrt(Rl/Zo)*sqrt(Rl**2+Xl**2-(Rl*Zo)))/(Rl**2+Xl**2);\n", "B2=(Xl-sqrt(Rl/Zo)*sqrt(Rl**2+Xl**2-(Rl*Zo)))/(Rl**2+Xl**2);\n", "C1=(B1/(2*pi*f))*10**12;\n", "L2=(-1/(B2*2*pi*f))*10**9;\n", "X1=(1/B1)+((Xl*Zo)/Rl)-(Zo/(B1*Rl));\n", "X2=(1/B2)+((Xl*Zo)/Rl)-(Zo/(B2*Rl));\n", "L1=(X1/(2*pi*f))*10**9;\n", "C2=(-1/(X2*2*pi*f))*10**12;\n", "print\"inductor of first circuit in nH = \",L1\n", "print\"capacitor of the first circuit in pF = \",C1\n", "print\"inductor of second circuit in nH = \",L2\n", "print\"capacitor of the second circuit in pF = \",C2 \n", "print\"\\\"NOTE:−for above specific problem Rl>Zo, positive X implies inductor , negative X implies capacitor , positive B implies capacitor and negative B implies inductor .\\\"\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.2 page no:304" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "charecteristic impedence of matching section = 22.360679775\n", " fractional bandwidth = 0.293159219438\n" ] } ], "source": [ "#Exa 6.5 design quarter wave matching transformer\n", "#example:−6.5,page no.−304.\n", "from math import sqrt,pi,acos\n", "#program to design a single section quarter wave matching transformer .\n", "Zl=10; # load impedence .\n", "Zo=50; # characteristic impedence .\n", "fo=3*10**9;swr=1.5; # maximum limit of swr.\n", "Z1=sqrt(Zo*Zl); # characteristic impedence of the matching section .\n", "taom=(swr-1)/(swr+1);\n", "frac_bw=2-(4/pi)*acos((taom/sqrt(1-taom**2))*(2*sqrt(Zo*Zl)/abs(Zl-Zo))); # fractional bandwidth .\n", "print \"charecteristic impedence of matching section =\",Z1\n", "print \" fractional bandwidth = \",frac_bw" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.6 page no:307" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "approximate value of reflection coefficient is = 0.4\n", "the error in percent is about = 4.0\n" ] } ], "source": [ "#Exa 6.6 program to evaluate the worst case percent error\n", "# example:−6.6,page no.−307.\n", "#from math import abs\n", "# program to evaluate the worst case percent error in computing magnitude of reflection coefficient .\n", "Z1 =100.; \n", "Z2 =150.; \n", "Zl =225.;\n", "tao_1=(Z2-Z1)/(Z2+Z1);\n", "tao_2=(Zl-Z2)/(Zl+Z2);\n", "tao_exact=(tao_1+tao_2)/(1+tao_1*tao_2); # this results as angle is taken zero .\n", "tao_approx=tao_1+tao_2; # this results as angle is taken zero .\n", "eror=abs(((tao_exact -tao_approx)/tao_exact)*100);\n", "print \"approximate value of reflection coefficient is = \",tao_approx\n", "print \"the error in percent is about = \",eror" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.7 page no:312" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Z1 = 91.7004043205\n", "Z2 = 84.0896415254\n", "Z3 = 77.1105412704\n" ] } ], "source": [ "#Exa 6.7 design three section binomial transformer\n", "# example:−6.7,page no.−312.\n", "from math import pi,acos\n", "# program to design three section binomial transformer .\n", "Zl=50.;Zo=100.;N=3;taom=0.05;\n", "A=(2**-N)*abs((Zl-Zo)/(Zl+Zo));\n", "frac_bw=2-(4/pi)*acos(0.5*(taom/A)**2);\n", "c=1\n", "Z1=Zo*((Zl/Zo)**((2**-N)*(c**N)));\n", "print \"Z1 = \",Z1\n", "c=3**(1/3)\n", "Z2=Z1*((Zl/Zo)**((2**-N)*(c**N)));\n", "print \"Z2 = \",Z2\n", "c=3**(1/3)\n", "Z3=Z2*((Zl/Zo)**((2**-N)*(c**N)));\n", "print \"Z3 = \",Z3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.8 page no:316" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the characteristic impedences are = 52.5641025641 , 52.5641025641 , 95.1219512195\n" ] } ], "source": [ "#Exa 6.8 design three section chebysev transfomer\n", "# example:−6.8,page no.−316.\n", "from math import pi,cosh\n", "from sympy import asec,acosh\n", "# program to design a three section chebysev transformer .\n", "Zl=100.;Zo=50.;taom=0.05;N=3;A=0.05;\n", "thetam=asec(cosh((1/N)*acosh((1/taom)*abs((Zl-Zo)/(Zl+Zo)))))*(180/pi);\n", "x=(cosh((1/N)*acosh((1/taom)*abs((Zl-Zo)/(Zl+Zo)))))\n", "tao_o=A*(x**3)/2;\n", "tao_1=(3*A*(x**3-x))/2; # from symmetry tao 3=tao \n", "Z1=Zo*((1+tao_o)/(1-tao_o));\n", "Z2=Z1*((1+tao_1)/(1-tao_1));\n", "Z3=Zl*((1-tao_o)/(1+tao_o));\n", "print \"the characteristic impedences are = \",Z1,\",\",Z2,\",\",Z3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 6.9 page no:323" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tao o = -0.346573590279973\n", "A= -3.54467649562\n" ] } ], "source": [ "#Exa 6.9 design triangular taper and a klopfenstein taper\n", "#example:−6.9,page no.−323.\n", "from sympy import acosh,log\n", "#program to designa triangular taper and a klopfenstein taper .\n", "taom =0.02; Zl =50.; Zo =100.;\n", "tao_o=0.5*log(Zl/Zo);\n", "A=complex(acosh(tao_o/taom));\n", "A=A.real;\n", "print \"tao o = \",tao_o\n", "print\"A= \",A" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }