{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1 Passive Circuits" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2.2, Pg.no.5" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of resistance R is 16.61 ohm\n", "The value of resistance R3 is 66.82 ohm\n" ] } ], "source": [ "import math\n", "#given\n", "Ro=50.0\n", "ILdB=6.0 #T−type attenuator provide 6−dB insertion loss \n", "#calculation\n", "IL=10**-(ILdB/20) #Determination of R\n", "R=Ro*(1-IL)/(1+IL)\n", "R=round(R,2)\n", "print 'The value of resistance R is',R,'ohm' \n", "#Determination of R3\n", "R3=(2*Ro*IL)/(1-(0.5)**2)\n", "R3=round(R3,2)\n", "print 'The value of resistance R3 is',R3,'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2.3,Pg.no.7" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of resistance RA and RB is 150.5 ohm\n", "The value of resistance RC is 37.35 ohm\n" ] } ], "source": [ "import math\n", "#given\n", "Ro=50.0\n", "ILdB=6.0\n", "IL=10**-(ILdB/20) #Determination of RA and RB\n", "RA=Ro*(1+IL)/(1-IL)\n", "RA=round(RA,1)\n", "print 'The value of resistance RA and RB is',RA,'ohm'\n", "#Determination of RC\n", "RC=Ro*(1-(IL)**2)/(2*IL)\n", "RC=round(RC,2)\n", "print 'The value of resistance RC is',RC,'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2.4,Pg.no.9" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of resistance R1 is 1.0 ohm\n", "The value of resistance R3 is 5624.0 ohm\n", "The value of insertion loss is 0.12 decibels\n" ] } ], "source": [ "import math\n", "from math import log10\n", "#given\n", "Rs=75.0 #resistance\n", "Rl=50.0 \n", "#Determination of R1\n", "R1=(Rs*(Rs-Rl))**(1/2)\n", "R1=round(R1,2)\n", "print 'The value of resistance R1 is',R1,'ohm'\n", "#Determination of R3\n", "R3=((Rs**2)-(R1**2))/R1\n", "R3=round(R3,2)\n", "print 'The value of resistance R3 is',R3,'ohm'\n", "#Determination of insertion loss\n", "IL=(R3*(Rs+R1))/((Rs+R1+R3)*(R3+R1)-(R3)**2)\n", "ILdB=-20*log10(IL) #convertion of power in decibels\n", "ILdB=round(ILdB,2)\n", "print 'The value of insertion loss is',ILdB,'decibels'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.2.5,Pg.no.10" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of resistance R2 is 1.0 ohm\n", "The value of resistance R3 is 2499.0 ohm\n", "The value of insertion loss is 0.2 decibels\n" ] } ], "source": [ "from math import log10\n", "Rs=10.0\n", "Rl=50.0 #Determination of R2\n", "R2=(Rl*(Rl-Rs))**(1/2)\n", "R2=round(R2,2)\n", "print 'The value of resistance R2 is',R2,'ohm'\n", "#Determination of R3\n", "R3=((Rl**2)-(R2**2))/R2\n", "R3=round(R3,2)\n", "print 'The value of resistance R3 is',R3,'ohm'\n", "#Determination of insertion loss\n", "IL=(R3*(Rs+Rl))/((Rs+R3)*(R3+R2+Rl)-(R3)**2)\n", "ILdB=-20*log10(IL) #convertion of power in decibels\n", "ILdB=round(ILdB,1)\n", "print 'The value of insertion loss is',ILdB,'decibels'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.5.1,Pg.no.21" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of self resonant freq is 60.2 MHz\n", "The value of Q−factor is 31.4\n", "The value of effective inductance is -5.79846400003e-12 uH\n", "The value of effective Q−factor is -5.41522720497e+12\n" ] } ], "source": [ "import math\n", "C=7*10**-12\n", "R=5.0\n", "L=10**-6\n", "f=25*10**6 \n", "#Determination of self resonant freq of coil denoted as Fsr\n", "Fsr=1/(2*3.14*(L*C)**0.5)\n", "Fsr=Fsr/(10**6)\n", "Fsr=round(Fsr,1)\n", "print 'The value of self resonant freq is',Fsr,'MHz'\n", "#Determination of Q−factor of coil , excluding self − capacitive effects\n", "Q=(2*3.14*f*L)/R\n", "print 'The value of Q−factor is',Q\n", "#Determination of effective inductance\n", "Leff=L/(1-(f/Fsr)**2)\n", "Leff=Leff*(10**6)\n", "#Leff=round(Leff,0)\n", "print 'The value of effective inductance is',Leff,'uH'\n", "#Determination of effective Q−factor\n", "Qeff=Q*(1-(f/Fsr)**2)\n", "Qeff=round(Qeff,0)\n", "print 'The value of effective Q−factor is',Qeff" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.8.1,Pg.no.26" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of common resonant freq is 1e-06 Mrad/sec\n", "The transfer impedance is -6.83732235918e-05 ohm\n" ] } ], "source": [ "import cmath\n", "#given\n", "Lp=150*10**-6 #inductance\n", "Ls=150*10**-6\n", "Cp=470*10**-12 #capacitance\n", "Cs=470*10**-12 #Lp=Ls=150 uH,Cp=Cs=470 pF\n", "Q=85.0 #Q−factor for each ckt is 85\n", "c=0.01 #Coeff of coupling is 0.01\n", "Rl=5000.0 #Load resistance Rl=5000 ohm\n", "r=75000.0 #Constant current source with internal resistance r=75 kohm\n", "#calculations\n", "#Determination of common resonant frequency\n", "wo=1/((Lp*Cp)**(1/2))\n", "wo=wo/(10**6)\n", "print 'The value of common resonant freq is',wo,'Mrad/sec'\n", "p=3.77*10**6\n", "Z2=complex(62.9004,557.266) #Formula=Rl/(1+(p*j*Cs*Rl))\n", "Z1=complex(4.2465,564.33) #Formula=r/(1+(p*j*Cp*r)) ;At resonance Zs=Zp=Z\n", "z=complex(0,1)\n", "Z=wo*Ls*(1/Q +z)\n", "Zm=complex(0,p*c*Lp) #Determination of denominator\n", "Dr=((Z+Z1)*(Z+Z2))-(Zm**2) \n", "#Hence transfer impedance is given as\n", "Zr= (Z1*Z2*Zm)/Dr\n", "Z=Zr.real\n", "#Z=round(Z,2)\n", "#Zr.imag=round(Zr.imag,2)\n", "print 'The transfer impedance is',Z,'ohm'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1.10.1,Pg.no.34" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of common resonant freq is 169.56 Mrad/ sec\n", "The value of Gl is 5.0 mSec\n", "The value of alpha is 3.14\n", "The value of effective load is 1.97 kohm\n", "The value of tuning capacitance is 47.73 pF\n", "The value of Rd is 1.85343097504e-05 kohm\n", "The value of −3dB BW is 1.69 MHz\n" ] } ], "source": [ "import math\n", "C1=70*10**-12\n", "C2=150*10**-12\n", "Rl=200.0\n", "Q=150.0\n", "f=27*10**6\n", "r=40000.0\n", "#Determination of common resonant freq\n", "wo=2*3.14*f\n", "wo=wo/(10**6)\n", "print 'The value of common resonant freq is',wo,'Mrad/ sec'\n", "#Determination of Gl\n", "Gl=1/Rl\n", "G1=Gl*(10**3) \n", "print'The value of Gl is',G1,'mSec'\n", "#Checking the approxiamtion in denominator\n", "ap=((wo*(C1+C2))/(Gl))**2\n", "alpha=(C1+C2)/C1\n", "alpha=round(alpha,2)\n", "print 'The value of alpha is',alpha\n", "#Determination of effective load\n", "Reff=((alpha)**2)*Rl\n", "Reff=Reff/(10**3)\n", "Reff=round(Reff,2)\n", "print 'The value of effective load is',Reff,'kohm' \n", "#If effective load is much less than internal resistance hence tuning capacitance then\n", "Cs=C1*C2/(C1+C2)\n", "Cs=Cs*(10**12)\n", "Cs=round(Cs,2)\n", "print 'The value of tuning capacitance is',Cs,'pF'\n", "#Determination of Rd\n", "Rd=Q/(wo*Cs)\n", "Rd=Rd/(10**3)\n", "print 'The value of Rd is',Rd,'kohm'\n", "#If Rd is much greater than Reff then −3dB bandwidth is given by\n", "B=1/(2*3.14*C2*alpha*Rl)\n", "B=B/(10**6)\n", "B=round(B,2)\n", "print 'The value of −3dB BW is',B,'MHz'" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }