{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1: Structure and Bonding" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 1, Page no: 35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "c = 3 * 10 ** 10 # Velocity of light, cm/sec\n", "\n", "# Variable\n", "wavelength = 3500 * 10 ** -8 # Wavelength of radiation, cm\n", "\n", "# Solution\n", "print \"v = c / wavelength\"\n", "print \"v: Velocity, c: Speed of light\"\n", "\n", "v = c / wavelength\n", "\n", "print \"The frequency of radiation is\", '{:.2e}'.format(v), \"Heartz.\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "v = c / wavelength\n", "v: Velocity, c: Speed of light\n", "The frequency of radiation is 8.57e+14 Heartz.\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 2, Page no: 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "c = 3 * 10 ** 8 # speed of light, m/sec\n", "\n", "# Variable\n", "f = 5 * 10 ** 16 # frequency, cycles/sec\n", "\n", "# Solution\n", "v_bar = f / c\n", "print \"The wave number is\", '{:.2e}'.format(v_bar), \"cycles/m.\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wave number is 1.67e+08 cycles/m.\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 3, Page no: 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "c = 3 * 10 ** 8 # Speed of light, m/sec\n", "\n", "# Variable\n", "T = 2.4 * 10 ** -10 # Time period, sec\n", "\n", "# Solution\n", "f = 1 / T # Frequency, /sec\n", "lamda = c / f # wavelength, m\n", "v_bar = 1 / lamda # wavenumber, /meter\n", "\n", "print \"Frequency:\", '{:.2e}'.format(f), \"/sec\"\n", "print \"Wavelength:\", '{:.2e}'.format(lamda), \"m\"\n", "print \"Wave number:\", '{:.2e}'.format(v_bar), \"/m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency: 4.17e+09 /sec\n", "Wavelength: 7.20e-02 m\n", "Wave number: 1.39e+01 /m\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 4, Page no: 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Constants\n", "c = 3 * 10 ** 8 # Speed of light, m/sec\n", "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variable\n", "ke = 4.55 * 10 ** -25 # Kinetic Energy, J\n", "\n", "# Solution\n", "v = math.sqrt(ke * 2 / m)\n", "\n", "lamda = h / (m * v)\n", "\n", "print \"The de Broglie wavelength is\", '{:.2e}'.format(lamda), \"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The de Broglie wavelength is 7.28e-07 m\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 5, Page no: 36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variables\n", "m = 10 * 10 ** -3 # Mass of the ball, kg\n", "v = 10 ** 5 # Velocity of ball, cm / sec\n", "\n", "# Solution\n", "lamda = (h * 10 ** 7) / (m * v)\n", "print \"The Wavelength of iron ball is\", \"{:.2}\".format(lamda), \"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Wavelength of iron ball is 6.6e-30 cm\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 6, Page no: 37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variable\n", "lamda = 2 * 10 ** -10 # wavelength, m\n", "\n", "# Solution\n", "p = h / lamda\n", "\n", "print \"The momentum of the particle is\", \"{:.2}\".format(p), \"kg.m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The momentum of the particle is 3.3e-24 kg.m/s\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 7, Page no: 37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "pi = 3.141 # Pi\n", "\n", "# Variable\n", "delta_x = 1 * 10 ** -10 # uncertainty in velocity, m\n", "\n", "# Solution\n", "delta_v = h / (4 * pi * m * delta_x)\n", "\n", "print \"Uncertainty in position of electron >=\",\n", "print \"{:.2}\".format(delta_v), \"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Uncertainty in position of electron >= 5.8e+05 m/s\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 8, Page no: 37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "pi = 3.141 # Pi\n", "\n", "# Variables\n", "m = 10 ** -11 # Mass of particle, g\n", "v = 10 ** -4 # Velocity of particle, cm/sec\n", "delta_v = 0.1 / 100 # Uncertainty in velocity\n", "\n", "# Solution\n", "delta_v = v / 1000\n", "delta_x = (h * 10 ** 7) / (4 * pi * delta_v * m)\n", "\n", "print \"Uncertainty in position >=\",\n", "print \"{:.3e}\".format(delta_x), \"cm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Uncertainty in position 5.27e-10 cm\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 9, Page no: 37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "c = 3 * 10 ** 8 # Speed of light, m/sec\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variable\n", "lamda = 650 * 10 ** -12 # Wavelength of radiation, m\n", "\n", "# Solution\n", "E = h * c / lamda\n", "\n", "print \"Energy per photon\", \"{:.3e}\".format(E), \"J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy per photon 3.058e-16 J\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 10, Page no: 37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "h = 6.625 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variables\n", "v = 6.5 * 10 ** 7 # Velocity of particle, m/s\n", "lamda = 5 * 10 ** -11 # Wavelength, m\n", "\n", "# Solution\n", "P = h / lamda\n", "\n", "print \"The momentum of the particle\", \"{:.2e}\".format(P), \"kg.m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The momentum of the particle 1.33e-23 kg.m/s\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 11, Page no: 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Constants\n", "c = 3 * 10 ** 8 # Speed of light, m/sec\n", "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variables\n", "lamda = 200 * 10 ** -7 # Wavelength, cm\n", "wf = 6.95 * 10 ** -12 # Work function, erg\n", "\n", "# Solution\n", "E = (h * c) * 10 ** 9 / lamda\n", "\n", "print \"Energy of photon\", \"{:.3e}\".format(E), \"erg\"\n", "\n", "ke = E - wf\n", "\n", "v = math.sqrt((2 * ke) / (m * 10 ** 3)) * 10 ** -2\n", "\n", "print \"The maximum velocity of electron\", \"{:.3e}\".format(v), \"m/sec\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Energy of photon 9.939e-12 erg\n", "The maximum velocity of electron 8.105e+05 m/sec\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 12, Page no: 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variables\n", "m = 150 # Weight of ball, gm\n", "v = 50 # Velocity, m/sec\n", "\n", "lamda = h / (m * v * 10 ** -8)\n", "print \"Wavelength of ball\", \"{:.3e}\".format(lamda), \"m\"\n", "print \"Its wavelength is so short that it does not fall\",\n", "print \"in visible range, so we cannot observe it.\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Wavelength of ball 8.835e-30 m\n", "Its wavelength is so short that it does not fall in visible range, so we cannot observe it.\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 13, Page no: 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "pi = 3.141 # Pi\n", "\n", "# Variables\n", "m = 0.1 # Mass of base ball, kg\n", "delta_x = 10 ** -10 # Uncertainty in position, m\n", "\n", "# Solution\n", "delta_v = h / (4 * pi * m * delta_x)\n", "\n", "print \"Uncertainty in velocity >=\", \"{:.2e}\".format(delta_v), \"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Uncertainty in velocity >= 5.27e-24 m/s\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 14, Page no: 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constant\n", "t_v = 1.3 * 10 ** 15 # Threashold freq. Pt, /sec\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "\n", "# Solution\n", "print \"The threshold frequency is the lowest frequency\",\n", "print \"that photons may possess to produce the photoelectric\",\n", "print \"effect.\"\n", "E = h * t_v\n", "print \"The energy corresponding to this frequency is the minimum\",\n", "print \"energy =\", \"{:.2e}\".format(E), \"erg\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The threshold frequency is the lowest frequency that photons may possess to produce the photoelectric effect.\n", "The energy corresponding to this frequency is the minimum energy = 8.61e-19 erg\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 15, Page no: 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "e = 1.602 * 10 ** -19 # Charge of electron, C\n", "\n", "# Variable\n", "v = 1.87 * 10 ** 9 # Velocity of electron, m/sec\n", "\n", "# Solution\n", "V = m * v ** 2 / (2 * e)\n", "lamda = h / (m * v)\n", "\n", "print \"The voltage is\", \"{:.2e}\".format(V), \"volt\"\n", "print \"The de Broglie wavelength is\", \"{:.2e}\".format(lamda), \"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The voltage is 9.93e+06 volt\n", "The de Broglie wavelength is 3.89e-13 m\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem 16, Page no: 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variable\n", "lamda = 4.8 * 10 ** -9 # Wavelength of electron, m\n", "\n", "# Solution\n", "ke = ((h / lamda) ** 2) / (2 * m)\n", "\n", "print \"The Kinetic Energy of moving electron is\", \"{:.2e}\".format(ke),\n", "print \"J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Kinetic Energy of moving electron is 1.05e-20 J\n" ] } ], "prompt_number": 40 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 17, Page no: 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Constants\n", "m = 9.1 * 10 ** -31 # Mass of electron, kg\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "c = 3 * 10 ** 8 # Speed of light, m/sec\n", "\n", "# Variables\n", "v = 6.46 * 10 ** 5 # Velocity of electron, m/sec\n", "lamda = 200 * 10 ** -9 # Wavelength of light, m\n", "\n", "# Solution\n", "E = (h * c) / lamda\n", "ke = m * v ** 2\n", "w = E - ke\n", "\n", "print \"The workfunction of the metal surface is\", \"{:.3e}\".format(w),\n", "print \"J\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The workfunction of the metal surface is 6.141e-19 J\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 18, Page no: 40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "# Constants\n", "e = 1.602 * 10 ** -19 # Charge of proton, C\n", "m_p = 1.66 * 10 ** -27 # Mass of proton, kg\n", "m_e = 9.1 * 10 ** -31 # Mass of electron, kg\n", "h = 6.626 * 10 ** -34 # Plank's constant, J.sec\n", "\n", "# Variable\n", "V = 35 # Acceleration potential, volt\n", "\n", "# Solution\n", "lamda_p = h / math.sqrt(2 * e * V * m_p)\n", "lamda_e = h / math.sqrt(2 * e * V * m_e)\n", "\n", "print \"The wavelength of electron when accelerated with same\",\n", "print \"potential is\", \"{:.3e}\".format(lamda_e), \"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavelength of electron when accelerated with same potential is 2.074e-10 m\n" ] } ], "prompt_number": 45 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 19, Page no: 41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "B_O1 = (10 - 6) / 2 # Bond Order for O2\n", "B_O2 = (10 - 7) / 2 # Bond Order for O2-\n", "\n", "print \"Bond length of O2- > O2 as Bond order of O2\",\n", "print \"> Bond order of O2- :\", B_O1 > B_O2\n", "print \"Both are paramagnetic, because they contain unpaired electrons.\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Bond length of O2- > O2 as Bond order of O2 > Bond order of O2- : True\n", "Both are paramagnetic, because they contain unpaired electrons.\n" ] } ], "prompt_number": 51 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 20, Page no: 41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "B_O = (9 - 4) / 2.0 # Bond order of N2+\n", "\n", "print \"The Bond order of N2+ is\", B_O\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Bond order of N2+ is 2.5\n" ] } ], "prompt_number": 54 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Problem: 21, Page no: 41" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Solution\n", "v_n = 2 * 5 # number of valence e- in nitrogen\n", "v_co = 4 + 6 # number of valence e- in CO\n", "\n", "print \"The number of valence electrons in N2\", v_n\n", "print \"The number of valence electrons in CO\", v_co\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of valence electrons in N2 10\n", "The number of valence electrons in CO 10\n" ] } ], "prompt_number": 55 } ], "metadata": {} } ] }