{ "metadata": { "celltoolbar": "Raw Cell Format", "name": "", "signature": "sha256:61bd0df995c71f463ddf51b756707a8ae69406d81e9ac36b5c0b23d29319f2ab" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 4: Cotrol System Components" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1 Page No. 61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print(\"Given \\n a)Excitation voltage(Ein)=2V \\n b) Setting Ratio(a)= 0.4 \\n\")\n", "Ein=2;\n", "print \"Ein=\", Ein\n", "a=0.4;\n", "print \"a=\",a\n", "Rt=10**3;\n", "print \"Rt=\",Rt\n", "Rl=5*10**3;\n", "print \"Rl=\",Rl\n", "print \"Eo = (a*Ein)/(1+(a*(1-a)*Rt)/Rl)\" ;\n", "Eo = (a*Ein)/(1+(a*(1-a)*Rt)/Rl);\n", "print \"output voltage(E0)=\",round(Eo,3)\n", "print \"e=((a**2)*(1-a))/((a*(1-a))+(Rl/Rt)) \"\n", "e=((a**2)*(1-a))/((a*(1-a))+(Rl/Rt));\n", "print \"loading error=\",round(e,4)\n", "print \"E= Ein*e \"\n", "E=Ein*e; #Voltage error=Excitation voltage(Ein)*Loading error(e)\n", "print \"Voltage error=\",round(E,4),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Given \n", " a)Excitation voltage(Ein)=2V \n", " b) Setting Ratio(a)= 0.4 \n", "\n", "Ein= 2\n", "a= 0.4\n", "Rt= 1000\n", "Rl= 5000\n", "Eo = (a*Ein)/(1+(a*(1-a)*Rt)/Rl)\n", "output voltage(E0)= 0.763\n", "e=((a**2)*(1-a))/((a*(1-a))+(Rl/Rt)) \n", "loading error= 0.0183\n", "E= Ein*e \n", "Voltage error= 0.0366 V\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2 Page No. 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "print \"Helical turn \"\n", "n=5; #Helical turn\n", "print \"n=\",n \n", "print \"\\n Winding Turn \"\n", "N=9000; #Winding Turn\n", "print \"N=\",N\n", "print \"\\n Potentiometer Resistance \"\n", "R=10000; #Potentiometer Resistance\n", "print \"R=\",R\n", "print \"\\n Input voltage \"\n", "Ein=90; #Input voltage\n", "print \"Ein=\",Ein\n", "print \"\\n Resistance at mid point \"\n", "r=5050; #Resistance at mid point \n", "print \"r=\",r\n", "print \"\\n Deviation from nominal at mid-point \"\n", "D=r-5000; #Deviation from nominal at mid-point\n", "print \"D=\",D\n", "print \"\\n Linearity \"\n", "L=D/R*100; #Linearity\n", "print \"L=\",L\n", "print \"\\n Resolution \"\n", "R=Ein/N; #Resolution\n", "print \"R=\",R\n", "print \"\\n Potentiometer Constant \"\n", "Kp=Ein/(2*math.pi*n); #Potentiometer Constant\n", "print \"Kp=\",round(Kp,3),\"V/rad\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Helical turn \n", "n= 5\n", "\n", " Winding Turn \n", "N= 9000\n", "\n", " Potentiometer Resistance \n", "R= 10000\n", "\n", " Input voltage \n", "Ein= 90\n", "\n", " Resistance at mid point \n", "r= 5050\n", "\n", " Deviation from nominal at mid-point \n", "D= 50\n", "\n", " Linearity \n", "L= 0\n", "\n", " Resolution \n", "R= 0\n", "\n", " Potentiometer Constant \n", "Kp= 2.865 V/rad\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3 Page No. 65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "print \"Since S2 is the referance stator winding , Es2=KVcos(theta) \\n where Es2 & Er are rms voltages \\n\"\n", "k=1\n", "Theta=60;\n", "print \"Theta=\",Theta\n", "V=28;\n", "print \"V(applied)=\",V,\"V\"\n", "print \"Es2=V*cos(Theta) \\n\"\n", "Es2=k*V*cos(Theta*(math.pi/180));\n", "print \"Es2=\",Es2,\"V\"\n", "print \"Es1=k*V*cos(Theta-120)\\n\"\n", "Es1=k*V*cos((Theta-120)*(math.pi/180)); # Given Theta=60 in degrees\n", "print \"Es1=\",Es1,\"V\"\n", "print \"Es3=k*V*cos(Theta+120) \\n\"\n", "Es3=k*V*cos((Theta+120)*(math.pi/180));\n", "print \"Es3=\",Es3,\"V\"\n", "print \"Es31=sqrt(3)*k*Er*sin(Theta)\"\n", "Es31=sqrt(3)*k*V*sin(Theta*(math.pi/180));\n", "print \"Es31=\",Es31,\"V\"\n", "print \"Es12=sqrt(3)*k*Er*sin((Theta-120)\"\n", "Es12=sqrt(3)*k*V*sin((Theta-120)*(math.pi/180));\n", "print \"Es12=\",Es12,\"V\"\n", "print \"Es23=sqrt(3)*k*Er*sin((Theta+120)\"\n", "Es23=sqrt(3)*k*V*sin((Theta+120)*(math.pi/180));\n", "print \"Es23=\",round(Es23,1),\"V\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Since S2 is the referance stator winding , Es2=KVcos(theta) \n", " where Es2 & Er are rms voltages \n", "\n", "Theta= 60\n", "V(applied)= 28\n", "Es2=V*cos(Theta) \n", "\n", "Es2= 14.0 V\n", "Es1=k*V*cos(Theta-120)\n", "\n", "Es1= 14.0 V\n", "Es3=k*V*cos(Theta+120) \n", "\n", "Es3= -28.0 V\n", "Es31=sqrt(3)*k*Er*sin(Theta)\n", "Es31= 42.0 V\n", "Es12=sqrt(3)*k*Er*sin((Theta-120)\n", "Es12= -42.0 V\n", "Es23=sqrt(3)*k*Er*sin((Theta+120)\n", "Es23= 0.0 V\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4 Page No. 67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "print \"Sensitivity = 5v/1000rpm \\n\"\n", "Vg=5;\n", "print \"Vg=\",Vg,\"\\n\"\n", "print \"w(in radians/sec)=(1000/60)*2* pi \\n\"\n", "w=(1000/60)*2*math.pi;\n", "print \"w=\",round(w,6),\"radians/sec\",\"\\n\"\n", "print \"Kt=Vg/w \\n\"\n", "Kt=Vg/w;\n", "print \"Gain constant(Kt)=\",round(Kt,4),\"V/rad/sec\" # Answer given in textbook is after taking appoximation." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Sensitivity = 5v/1000rpm \n", "\n", "Vg= 5 \n", "\n", "w(in radians/sec)=(1000/60)*2* pi \n", "\n", "w= 100.530965 radians/sec \n", "\n", "Kt=Vg/w \n", "\n", "Gain constant(Kt)= 0.0497 V/rad/sec\n" ] } ], "prompt_number": 34 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.5 Page No. 80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "print \"Torque = KmVm = 2 \\n\"\n", "t=2;\n", "print \"Torque(t) = \",t,\"\\n\"\n", "Fm=0.2;\n", "print \"Coefficient of Viscous friction(Fm)=\",Fm,\"\\n\"\n", "N=4\n", "I=0.2\n", "F1=0.05\n", "print \"Wnl = t/Fm \\n\"\n", "Wnl = t/Fm;\n", "print \"No Load Speed(Wnl) = \",Wnl,\"rad/sec \\n\"\n", "print \"Fwt = I+(N^2*F1) \\n\"\n", "Fwt = I+(N**2*F1);\n", "print \"Total Viscous Friction(Fwt) = \",Fwt,\"lb ft sec\\n\"\n", "print \"Te = t-(Fwt*w) \\n\"\n", "Te=0.8 #load\n", "w=(t-Te)/Fwt;\n", "print \"Speed of Motor(w) = \",w,\"rad/sec \\n\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Torque = KmVm = 2 \n", "\n", "Torque(t) = 2 \n", "\n", "Coefficient of Viscous friction(Fm)= 0.2 \n", "\n", "Wnl = t/Fm \n", "\n", "No Load Speed(Wnl) = 10.0 rad/sec \n", "\n", "Fwt = I+(N^2*F1) \n", "\n", "Total Viscous Friction(Fwt) = 1.0 lb ft sec\n", "\n", "Te = t-(Fwt*w) \n", "\n", "Speed of Motor(w) = 1.2 rad/sec \n", "\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }