{ "metadata": { "name": "", "signature": "sha256:883876eb2a3f623c02ca3c86ebd8020a1b244805e7be4ab0f882af58fcdc4d16" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2 : MAGNETIC CIRCUITS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1 Page No : 89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#INPUT DATA\n", "N = 2000.;\t\t\t#no of turns\n", "I = 10.;\t\t\t#current in A\n", "Rm = 25.;\t\t\t#mean radius in cm\n", "d = 6.;\t\t\t#diameter of each turn in cm\n", "\n", "#CALCULATIONS \n", "MMF = N*I;\t\t\t#magneto motive force in A\n", "l = 2*math.pi*(Rm/100);\t\t\t#circumference of coli in m\n", "u = (4*math.pi*10**-7);\t\t\t#permeability (U = Ur*U0)\n", "a = (math.pi*d*d*10**-4)/4;\n", "reluctance = (l/(a*u));\t\t\t#reluctance in At/Wb\n", "flux = (MMF)/(reluctance);\t\t\t#flux in Wb\n", "fluxdensity = (flux/a);\t\t\t#flux density in Wb/m**2 or tesla\n", "\n", "#OUTPUT\n", "print \"Thus MMF, flux, flux density are %d A, %g Wb , %g Wb/m**2 or Tesla respectively \"%(MMF,flux,fluxdensity);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus MMF, flux, flux density are 20000 A, 4.52389e-05 Wb , 0.016 Wb/m**2 or Tesla respectively \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2 Page No : 90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Chapter-2, Example 2.2, Page 90\n", "\n", "#INPUT DATA\n", "phi = 5*10**-2;\t\t\t#flux in wb\n", "a = 0.2;\t\t\t#area of cross-section in m**2\n", "lg = 1.2*10**-2;\t\t\t#length of air gap in m\n", "ur = 1;\t\t\t#permeability\n", "u = ur*4*math.pi*10**-7;\t\t\t#permeability\n", "\n", "#CALCULATIONS \n", "B = (phi/a);\t\t\t#flux density in wb/sq.m\n", "H = (B/(4*math.pi*10**-7*ur));\t\t\t#magnetic flux density in A/m\n", "S = lg/(a*u);\t\t\t#reluctance of air gap in A/wb\n", "permeance = 1/S;\t\t\t#permenace in A/wb\n", "mmf_in_airgap = phi*S;\t\t\t#mmf in A\n", "\n", "#OUTPUT\n", "print \"Thus B, H,S, permeance, MMF in air gap are %1.2f Wb/sq.m, %g A/m ,%f A/wb ,\\\n", "%g Wb/A %d A respectively \"%(B,H,S,permeance,mmf_in_airgap);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus B, H,S, permeance, MMF in air gap are 0.25 Wb/sq.m, 198944 A/m ,47746.482928 A/wb ,2.0944e-05 Wb/A 2387 A respectively \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3 Page No : 90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#INPUT DATA\n", "phi = 0.1*10**-3;\t\t\t#flux in wb\n", "a = 1.7*10**-4;\t\t\t#area of cross-section in m**2\n", "lg = 0.5*10**-3;\t\t\t#length of air gap in m\n", "Rm = 15./2;\t\t\t#radius of ring in cm\n", "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space in henry/m\n", "N = 1500.;\t\t\t#no of turns of ring\n", "\n", "#CALCULATIONS \n", "B = (phi/a);\t\t\t#flux density in wb/sq.m\n", "H = (B/(4*math.pi*10**-7));\t\t\t#magnetic flux density in A/m\n", "ampere_turns_provided_fo = H*lg;\n", "total_ampere_turns_provi = N*1;\n", "Available_for_iron_path = N-(H*lg);\n", "length_of_iron_path = (2*Rm*math.pi*10**-2)-(lg);\t\t\t#length of iron path in m\n", "H_for_iron_path = ((N-(H*lg)))/(length_of_iron_path);\n", "ur = (B/(u0*H_for_iron_path));\t\t\t#relative permeability of iron\n", "\n", "#OUTPUT\n", "print \"Thus relative permeability of iron is %d\"%(ur);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus relative permeability of iron is 174\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4 Page No : 91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#INPUT DATA\n", "li = 0.5;\t\t\t#iron path length in m\n", "lg = 10.**-3;\t\t\t#length of air gap in m\n", "phi = 0.9*10**-3;\t\t\t#flux in wb\n", "a = 6.66*10**-4;\t\t\t#area of cross-section of iron in m**2\n", "N = 400.;\t\t\t#no of turns \n", "\n", "#CALCULATIONS \n", "B = (phi/a);\t\t\t#flux density in wb/sq.m\n", "Hg = (B/(4*math.pi*10**-7));\t\t\t#magnetic flux density in A/m\n", "AT_required = Hg*lg;\t\t\t#AT required for air path\n", "Hi = 1000;\t\t\t#magnetic flux density in A/m\n", "AT_required_for_iron_pat = Hi*li;\n", "total_AT_required = (Hg*lg)+(Hi*li);\n", "I = ((Hg*lg)+(Hi*li))/(N);\n", "\n", "#OUTPUT\n", "print \"Thus exciting current required is %1.2f A\"%(I);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus exciting current required is 3.94 A\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.5 Page No : 92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Chapter-2, Example 2.5, Page 92\n", "\n", "#INPUT DATA\n", "r = 0.01;\t\t\t#radius in m\n", "lg = 10.**-3;\t\t\t#length of air gap in m\n", "Rm = (30./2)*10**-2;\t\t\t#mean radius in m\n", "ur = 800.;\t\t\t#relative permeability of iron\n", "ur2 = 1.;\t\t\t#relative permeability of air gap\n", "N = 250.;\t\t\t#no of turns\n", "phi = 20000.*10**-8;\t\t\t#flux in Wb\n", "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space \n", "a = math.pi*(r)**2;\t\t\t#area of cross-section in m\n", "leakage_factor = 1.1\n", "\n", "#CALCULATIONS \n", "reluctance_of_air_gap = (lg/(u0*ur2*a));\t\t\t#reluctance of air gap in A/wb\n", "li = (math.pi*(2*r)-(lg));\t\t\t#length of iron path in m\n", "reluctance_of_iron_path = ((math.pi*0.3)-(lg))/(4*math.pi*10**-7*800*a);\t\t\t#in A/wb\n", "total_reluctance = reluctance_of_air_gap+reluctance_of_iron_path;\t\t\t#in A/wb\n", "MMF = phi*total_reluctance;\t\t\t#in Ampere turns\n", "current_required = (MMF)/(N);\t\t\t#in A\n", "\n", "#OUTPUT\n", "print \"Thus current required is %1.2f A \"%(current_required);\n", "#Including leakage\n", "\n", "#CALCULATIONS\n", "MMF_of_airgap = phi*reluctance_of_air_gap;\t\t\t#in A/wb\n", "Total_flux_in_ironpath = leakage_factor*phi;\t\t\t#in Wb\n", "MMF_of_ironpath = Total_flux_in_ironpath*reluctance_of_iron_path;\t\t\t#in A\n", "Total_MMF = MMF_of_ironpath+MMF_of_airgap;\t\t\t#in A/wb\n", "current_required2 = Total_MMF/(N);\t\t\t#in A\n", "\n", "#OUTPUT\n", "print \"Thus current required is %1.3f A\"%(current_required2);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus current required is 4.41 A \n", "Thus current required is 4.650 A\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6 Page No : 93" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#INPUT DATA\n", "l1 = 0.1;\t\t\t#length in m\n", "l2 = 0.18;\t\t\t#length in m\n", "l3 = 0.18;\t\t\t#length in m\n", "lg = 1.*10**-3;\t\t\t#airgap length in mm\n", "a1 = 6.25*10**-4;\t\t\t#area in m**2\n", "a2 = 3.*10**-4;\t\t\t#area in m**2\n", "ur = 800.;\t\t\t#relative permeability of iron path\n", "ur2 = 1.;\t\t\t#relative permeability in free space\n", "u0 = 4*math.pi*10**-7\n", "N = 600.;\n", "phi = 10.**-4;\t\t\t#airgap flux in Wb\n", "\n", "#CALCULATIONS \n", "#for the airgap\n", "Bg = (phi/(a1));\t\t\t#fluxdensity in Tesla\n", "Hg = (Bg/(u0*ur2));\t\t\t#magnetimath.sing force in A/m\n", "MMF1 = Hg*lg;\t\t\t#in A\n", "#for path I1\n", "B1 = 0.16;\t\t\t# flux density in tesla\n", "H1 = (B1/(ur*u0));\t\t\t#magnetimath.sing force in A/m\n", "MMF2 = H1*l1;\t\t\t#in A\n", "#math.since paths l2 and l3 are similar,the total flux divide equally between these two paths.Since these paths are in parallel,consider only one of them\n", "#for path l2\n", "flux = 50*10**-6;\t\t\t#flux in wb\n", "B2 = (flux/a2);\t\t\t#fluxdensity in tesla\n", "H2 = (B2/(ur*u0));\t\t\t#magnetimath.sing force in A/m\n", "MMF3 = H2*l2;\t\t\t#in A\n", "totalmmf = MMF1+MMF2+MMF3;\t\t\t#in A\n", "I = (totalmmf/N);\t\t\t#current required in A\n", "\n", "#OUTPUT\n", "print \"Thus current required is %1.3f A\"%(I);\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus current required is 0.288 A\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7 Page No : 95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "#Chapter-2, Example 2.7, Page 95\n", "\n", "#INPUT DATA\n", "Dm = 0.1\t\t\t#diameter in m\n", "a = 10.**-3;\t\t\t#area of cross-section im m**2\n", "N = 150.;\t\t\t#no of turns\n", "ur = 800.;\t\t\t#permeability of iron ring\n", "B = 0.1;\t\t\t#in Wb/m**2\n", "u0 = 4*math.pi*10**-7;\t\t\t#permeability of free space\n", "\n", "#CALCULATIONS \n", "S = (math.pi*Dm)/(a*ur*u0);\t\t\t#reluctance\n", "I = (B*a*S)/(N);\t\t\t#current in A\n", "\n", "#OUTPUT\n", "print \"Thus current is %f A\"%(I);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus current is 0.208333 A\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8 Page No : 95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#INPUT DATA\n", "l = 0.3;\t\t\t#length in m\n", "d = 1.5*10**-2;\t\t\t#diameter in m\n", "N = 900;\t\t\t#no of turns\n", "ur = 1;\t\t\t#relative permeability in free space\n", "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space\n", "I = 5;\t\t\t#current in A\n", "\n", "#CALCULATIONS \n", "a = (math.pi*(d)**2/4);\t\t\t#in m**2\n", "S = (l)/(a*ur*u0);\t\t\t#reluctance\n", "\n", "#OUTPUT\n", "print \"Thus reluctance is %f A/wb\"%(S);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus reluctance is 1350949115.231170 A/wb\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.9 Page No : 95" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#INPUT DATA\n", "lg = 10**-3;\t\t\t#length of air gap in m\n", "B = 0.9;\t\t\t#flux density in wb/m**2\n", "li = 0.3;\t\t\t#length of ironpath in m\n", "Hi = 800;\t\t\t#magnetic flux density in AT/m\n", "u0 = 4*math.pi*10**-7;\t\t\t#permeabilty in free space\n", "\n", "#CALCULATIONS \n", "#for iron path\n", "MMF_required1 = Hi*li;\t\t\t#magnetic motive force in AT\n", "#for air gap\n", "MMF_required2 = (B/u0)*lg;\t\t\t#magnetic motive force in AT\n", "Totalmmf = MMF_required1+MMF_required2\n", "\n", "#OUTPUT\n", "print \"Thus total MMF required is %d AT\"%(Totalmmf);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus total MMF required is 956 AT\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.10 Page No : 96" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "#INPUT DATA\n", "li = 0.5;\t\t\t#length of iron ring mean length in m\n", "N = 220;\t\t\t#no of turns\n", "I = 1.2;\t\t\t#current in A\n", "lg = 1.2*10**-3;\t\t\t#length of airgap in m\n", "ur = 350;\t\t\t#relative permeability of iron\n", "u0 = 4*math.pi*10**-7;\t\t\t#permeability in free space\n", "\n", "#CALCULATIONS \n", "MMF_produced = N*I;\n", "Si = li/(u0*ur);\t\t\t#reluctance of iron path\n", "Sg = lg/(u0);\t\t\t#reluctance of air gap\n", "S = Si+Sg;\t\t\t#total reluctance \n", "Flux_density = (MMF_produced)/(S);\n", "\n", "#OUTPUT\n", "print \"Thus fluxdensity is %1.3f Wb/m**2\"%(Flux_density);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Thus fluxdensity is 0.126 Wb/m**2\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }