{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "#1: Bonding in Solids" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.1, Page number 10" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "bond energy is 3.84 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "epsilon0=8.85*10**-12; \n", "r0=23.6*10**-10; #equilibrium distance(m)\n", "I=5.14; #ionisation energy(eV)\n", "EA=3.65; #electron affinity(eV)\n", "N=8; #born constant\n", "\n", "#Calculation\n", "x=1-(1/N);\n", "V=(e**2)*x/(4*e*math.pi*epsilon0*r0); #potential(V)\n", "E=I-EA; #net energy(eV)\n", "BE=round(V*10,2)-E; #bond energy(eV)\n", "\n", "#Result\n", "print \"bond energy is\",BE,\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.2, Page number 10" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "compressibility is -25.1095 *10**14\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "epsilon0=8.85*10**-12; \n", "r0=0.41*10**-3; #equilibrium distance(m)\n", "A=1.76; #madelung constant\n", "n=0.5; #repulsive exponent value\n", "\n", "#Calculation\n", "beta=72*math.pi*epsilon0*r0**4/(A*e**2*(n-1)); #compressibility\n", "\n", "#Result\n", "print \"compressibility is\",round(beta/10**14,4),\"*10**14\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.3, Page number 10" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cohesive energy is -3.065 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "epsilon0=8.85*10**-12; \n", "r0=0.314*10**-9; #equilibrium distance(m)\n", "A=1.75; #madelung constant\n", "N=5.77; #born constant\n", "I=4.1; #ionisation energy(eV)\n", "EA=3.6; #electron affinity(eV)\n", "\n", "#Calculation\n", "V=-A*e**2*((N-1)/N)/(4*e*math.pi*epsilon0*r0);\n", "PE=round(V,2)/2; #potential energy per ion(eV)\n", "x=(I-EA)/2;\n", "CE=PE+x; #cohesive energy(eV)\n", "\n", "#Result\n", "print \"cohesive energy is\",CE,\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.4, Page number 11" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "binding energy is 665.0 *10**3 kJ/kmol\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration \n", "N=6.02*10**26; #Avagadro Number\n", "e=1.6*10**-19; #charge(coulomb)\n", "epsilon0=8.85*10**-12; \n", "r0=0.324*10**-9; #equilibrium distance(m)\n", "A=1.75; #madelung constant\n", "n=8.5; #repulsive exponent value\n", "\n", "#Calculations\n", "U0=(A*e/(4*math.pi*epsilon0*r0))*(1-1/n); \n", "U=round(U0,1)*N*e; #binding energy(J/kmol)\n", "\n", "#Result\n", "print \"binding energy is\",round(U/10**6),\"*10**3 kJ/kmol\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.5, Page number 11" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "density of CsClis 4.389 *10**3 kg/m**3\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "rCs=0.165*10**-9; #radius(m)\n", "rCl=0.181*10**-9; #radius(m)\n", "MCs=133; #atomic weight\n", "MCl=35.5; #atomic weight\n", "N=6.02*10**26; #Avagadro Number\n", "\n", "#Calculation\n", "a=2*(rCl+rCs)/math.sqrt(3); #lattice constant(m)\n", "M=(MCs+MCl)/N; #mass of 1 molecule(kg)\n", "V=a**3; #volume of unit cell(m**3)\n", "rho=M/V; #density of CsCl(kg/m**3)\n", "\n", "#Result\n", "print \"density of CsClis\",round(rho/10**3,3),\"*10**3 kg/m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.6, Page number 12" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "effective charge is 0.72 *10**-19 coulomb\n", "answer given in the book is wrong\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "dm=1.98*(10**-29)*(1/3); #dipole moment\n", "l=0.92*10**-10; #bond length(m)\n", "\n", "#Calculation\n", "ec=dm/l; #effective charge(coulomb)\n", "\n", "#Result\n", "print \"effective charge is\",round(ec*10**19,2),\"*10**-19 coulomb\"\n", "print \"answer given in the book is wrong\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.7, Page number 12" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "energy required is -1.9 eV\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "e=1.6*10**-19; #charge(coulomb)\n", "epsilon0=8.85*10**-12; \n", "r=0.5*10**-9; #distance(m)\n", "I=5; #ionisation energy(eV)\n", "E=4; #electron affinity(eV)\n", "\n", "#Calculation\n", "C=e**2/(4*math.pi*epsilon0*e*r); #coulomb energy(eV)\n", "Er=I-E-C; #energy required(eV)\n", "\n", "#Result\n", "print \"energy required is\",round(Er,1),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Example number 1.9, Page number 13" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-2*a/r**3 + 90*b/r**11\n" ] } ], "source": [ "#importing modules\n", "import math\n", "from __future__ import division\n", "from sympy import *\n", "import numpy as np\n", "\n", "#Variable declaration\n", "n=1;\n", "m=9;\n", "a=Symbol('a')\n", "b=Symbol('b')\n", "r=Symbol('r')\n", "\n", "#Calculation\n", "y=(-a/(r**n))+(b/(r**m));\n", "y=diff(y,r);\n", "y=diff(y,r);\n", "\n", "#Result\n", "print y" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "young's modulus is 157 GPa\n" ] } ], "source": [ "#since the values of a,b,r are declared as symbols in the above cell, it cannot be solved there. hence it is being solved here with the given variable declaration\n", "#importing modules\n", "import math\n", "from __future__ import division\n", "\n", "#Variable declaration\n", "a=7.68*10**-29; \n", "r0=2.5*10**-10; #radius(m)\n", "\n", "#Calculation\n", "b=a*(r0**8)/9;\n", "y=((-2*a*r0**8)+(90*b))/r0**11; \n", "E=y/r0; #young's modulus(Pa)\n", "\n", "#Result\n", "print \"young's modulus is\",int(E/10**9),\"GPa\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }