{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# chapter1: electric charge" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.1" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.1, Page:3 \n", " \n", "\n", "\n", " The electric field in V/m is = 20000.0\n", "\n", " The force in N/C is = 20000.0\n", "\n", " The force on metal sphere in N is = 7.6e-05\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.1, Page:3 \\n \\n\"\n", "#Given:\n", "v=1000# potential\n", "d=0.05# distance\n", "q=3.8*10**-9# charge\n", "\n", "#solution:\n", "e=v/d;#electric field\n", "f=e;# force\n", "f1=f*q;# force on metal sphere\n", "print\"\\n The electric field in V/m is =\",e\n", "print\"\\n The force in N/C is =\",f\n", "print\"\\n The force on metal sphere in N is =\",f1\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.2" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.2, Page:4 \n", " \n", "\n", "The potential in V is = 80.0\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.2, Page:4 \\n \\n\"\n", "#Given:\n", "energy=2*10**-6\n", "c=2.5*10**-8# velocity of light\n", "#solution:\n", "v=energy/c# potential\n", "print\"The potential in V is =\",v\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.3" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.3, Page:5 \n", " \n", "\n", "The wavelength in Angstroms is = 3.88289589025\n", "\n", " The photon wavelength in Angstroms is = 9.11075e-05\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.3, Page:5 \\n \\n\"\n", "#Given:\n", "\n", "energy=10 #in electron volts\n", "m=9.1*10**-31# mass of electron in kg\n", "h=6.626*10**-34# planck's constant J.s\n", "c=3*10^8# speed of light in m/s\n", "\n", "#solution (a):\n", "energy1=energy*1.6*10**-19# energy in J\n", "p=(2*m*energy1)**0.5# momentum\n", "wavelength=h/p*(10)**10\n", "\n", "print\"The wavelength in Angstroms is =\",wavelength\n", "\n", "\n", "#solution (b):\n", "wavelength1=h*c/energy1*(10)**10;#photon wavelength\n", "\n", "print\"\\n The photon wavelength in Angstroms is =\",wavelength1\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example1.4" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.4, Page:6 \n", " \n", "\n", "The energy in eV is = 150.768804945\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.4, Page:6 \\n \\n\"\n", "\n", "#Given:\n", "\n", "wavelength=10**-10\n", "m=9.1*10**-31\n", "h=6.626*10**-34\n", "\n", "#solution:\n", "\n", "p=h/wavelength\n", "e=p*p/(2*m) # energy in J\n", "e1=e/(1.6*10**-19)# energy in eV\n", "\n", "print\"The energy in eV is =\",e1\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.5" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.5, Page:8 \n", " \n", "\n", "\n", " The wavelength in 10^-5 Angstroms is = 0.655671822473\n", "\n", " The wavelength in 10^-5 Angstroms is = 0.648946805494\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.5, Page:8 \\n \\n\"\n", "\n", "#Given:\n", "\n", "m=1.66*10**-27# 1u=1.66*10^-27 kg\n", "h=6.6262*10**-34#planck's constant in J.s\n", "energy1=120# in Mev for oxygen\n", "energy2=140# in MeV for nitrogen\n", "\n", "#solution(a):\n", "\n", "p=(2*m*16*energy1*(1.6022*10**-13))**0.5\n", "wavelength1=h/p*(10)**15#wavelength in 10^-5 Angstroms\n", "\n", "print\"\\n The wavelength in 10^-5 Angstroms is =\",wavelength1\n", "\n", "#solution (b):\n", "\n", "p=(2*m*14*energy2*(1.6022*10**-13))**0.5\n", "wavelength2=h/p*(10)**15#wavelength in 10^-5 Angstroms\n", "\n", "print\"\\n The wavelength in 10^-5 Angstroms is =\",wavelength2\n", "\n", "# 1 Angstrom = 10^-10 m\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example1.6" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.6, Page:9 \n", " \n", "\n", "The energy in eV is = 8275.0\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.6, Page:9 \\n \\n\"\n", "\n", "#Given:\n", "\n", "wavelength=1.5*10**-10\n", "h=6.62*10**-34\n", "c=3*10**8\n", "\n", "#solution:\n", "\n", "e=(h*c)/wavelength# energy in J\n", "e1=e/(1.6*10**-19)# energy in eV\n", "\n", "print\"The energy in eV is =\",e1\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.7" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.7, Page:10 \n", " \n", "\n", "\n", " The threshold frequency in s^-1 is = 1.23634168427e+15\n", "\n", " The threshold wavelength in Angstroms is = 2426.51367187\n", "\n", " The energy of photoelectrone in eV is = 3.911875\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.7, Page:10 \\n \\n\"\n", "\n", "#Given:\n", "\n", "E=5.12*1.6*10**-19# energy in J\n", "h=6.626*10**-34\n", "c=3*10**8\n", "wavelength=200*10**-9\n", "w=2.3# in eV\n", "\n", "#solution:\n", "\n", "tf=E/h# (part a)\n", "print\"\\n The threshold frequency in s^-1 is =\",tf\n", "\n", "tl=c/tf*10**10# (part b)\n", "print\"\\n The threshold wavelength in Angstroms is =\",tl\n", "\n", "e=(h*c)/(wavelength*1.6*10**-19)# photon energy in eV (part c)\n", "\n", "pe=e-w\n", "\n", "print\"\\n The energy of photoelectrone in eV is =\",pe\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.8" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.8, Page:10 \n", " \n", "\n", "\n", " The velocity of alpha particles for 1 MeV in m/s is = 6941056.08394\n", "\n", " The velocity of alpha particles for 2 MeV in m/s is = 9816135.6511\n", "\n", " The velocity of deuteron particles for 1 MeV in m/s is = 9816135.6511\n", "\n", " The velocity of deuteron particles for 2 MeV in m/s is = 13882112.1679\n", "\n", " The velocity of proton particles for 1 MeV in m/s is = 13882112.1679\n", "\n", " The velocity of proton particles for 2 MeV in m/s is = 19632271.3022\n" ] } ], "source": [ "#cal of velocity of alpha particles,deuteron,proton\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.8, Page:10 \\n \\n\"\n", "#Given:\n", "e1=1 # in MeV\n", "e2=2 # in MeV\n", "ma=4 # in u(amu)\n", "md=2 # in u(amu)\n", "mp=1 # in u(amu)\n", "\n", "# 1u = 1.6*10^-27 Kg\n", "\n", "#solution: part a)For alpha particles\n", "\n", "v1a=((2*e1*10**6*1.6*10**-19)/(ma*1.6605*10**-27))**.5\n", "print\"\\n The velocity of alpha particles for 1 MeV in m/s is =\",v1a# For 1 MeV\n", "\n", "v2a=((2*e2*10**6*1.6*10**-19)/(ma*1.6605*10**-27))**.5\n", "print\"\\n The velocity of alpha particles for 2 MeV in m/s is =\",v2a# For 2 MeV\n", "\n", "#solution: part b)For deuteron particles\n", "\n", "v1b=((2*e1*10**6*1.6*10**-19)/(md*1.6605*10**-27))**.5\n", "print\"\\n The velocity of deuteron particles for 1 MeV in m/s is =\",v1b # For 1 MeV\n", "\n", "\n", "v2b=((2*e2*10**6*1.6*10**-19)/(md*1.6605*10**-27))**.5\n", "print\"\\n The velocity of deuteron particles for 2 MeV in m/s is =\",v2b # For 2 MeV\n", "\n", "#solution: part c)For proton particles\n", "\n", "v1p=((2*e1*10**6*1.6*10**-19)/(mp*1.6605*10**-27))**.5\n", "print\"\\n The velocity of proton particles for 1 MeV in m/s is =\",v1p # For 1 MeV\n", "\n", "\n", "v2p=((2*e2*10**6*1.6*10**-19)/(mp*1.6605*10**-27))**.5\n", "print\"\\n The velocity of proton particles for 2 MeV in m/s is =\",v2p # For 2 MeV\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.9" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.9, Page: \n", " \n", "\n", "The energy in MeV is = 933.919973435\n" ] } ], "source": [ "#cal of The energy\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.9, Page: \\n \\n\"\n", "#Given:\n", "\n", "m=1/(6.023*10**23)#mass of 1 atom in g\n", "m1=m*10**-3#mass of 1 atom in Kg\n", "c=3*10**8# velocity in m/s\n", "#solution:\n", "\n", "e=m1*c*c; # energy in J\n", "e1=e/(1.6*10**-13)# energy in MeV\n", "\n", "print\"The energy in MeV is =\",e1\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.10" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.1, Page:11 \n", " \n", "\n", "The energy in eV is = 13.2638658253\n" ] } ], "source": [ "#cal of The energy\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.1, Page:11 \\n \\n\"\n", "#Given:\n", "\n", "enthalpy=1278 # enthalpy of combustion in kJ/mol\n", "\n", "#solution:\n", "\n", "energy=(enthalpy*1000)/(6.022*10**23*1.6*10**-19)\n", "\n", "print\"The energy in eV is =\",energy\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.11" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.11, Page:11 \n", " \n", "\n", "\n", " The mean binding energy of helium atom in MeV is = 7.0710038475\n", "\n", " The mean binding energy of oxygen atom in MeV is = 7.9800498909\n" ] } ], "source": [ "#cal of mean binding energy of helium and oxygen\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.11, Page:11 \\n \\n\"\n", "#Given:\n", "mh=1.0078\n", "mn=1.0087\n", "ma=4.0026\n", "mo=15.9949\n", "Ah=4.0026 # atomic mass of helium\n", "Ao=15.9949 # atomic mass of oxygen\n", "\n", "#solution:\n", "\n", "# part (a)\n", "\n", "B1=(2*mh+2*mn-ma)*931 # in MeV\n", "Bh=B1/Ah\n", "print\"\\n The mean binding energy of helium atom in MeV is =\",Bh\n", "\n", "# part (b)\n", "\n", "B2=(8*mh+8*mn-mo)*931 # in MeV\n", "Bo=B2/Ao\n", "print\"\\n The mean binding energy of oxygen atom in MeV is =\",Bo\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.12" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.12, Page:12 \n", " \n", "\n", "\n", " The mean binding energy of Be atom in MeV is = 7.05928572321\n", "From previous problem we have the avg. binding energy of helium atom is 7.08 MeV, Hence Be is unstable to fission into 2 alphas\n" ] } ], "source": [ "#cal of \n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.12, Page:12 \\n \\n\"\n", "#Given:\n", "mh=1.0078;\n", "mn=1.0087;\n", "ABe=8.0053; # atomic mass of beryllium\n", "\n", "#solution:\n", "\n", "B1=(4*mh+4*mn-ABe)*931; # in MeV\n", "Bh=B1/ABe;\n", "print\"\\n The mean binding energy of Be atom in MeV is =\",Bh\n", "\n", "print\"From previous problem we have the avg. binding energy of helium atom is 7.08 MeV, Hence Be is unstable to fission into 2 alphas\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.13" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.13, Page:12 \n", " \n", "\n", "\n", " The amount of coal required in Kg is = 2499.85671416\n" ] } ], "source": [ "#cal of amount of coal\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.13, Page:12 \\n \\n\"\n", "#Given:\n", "\n", "e=200; # in Mev\n", "m=0.235; # weight of uranium atom in Kg\n", "enthalpy=393.5; # in KJ/mol\n", "Na=6.02*10**23;\n", "\n", "\n", "#solution:\n", "e1=e*1.6*10**-19*10**6;\n", "atoms=Na/m;\n", "e2=atoms*e1;#energy released in J\n", "m1=(e2*12)/(393.5*1000*1000);# in Kg\n", "m2=m1/1000;# in tons\n", "print\"\\n The amount of coal required in Kg is =\", m2\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.14" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.14, Page:13 \n", " \n", "\n", "\n", " The energy release in part (a) in eV/molecule is = 2.51472\n", "\n", " The energy release in part (b) in eV/molecule is = 9.22688\n" ] } ], "source": [ "#cal of The energy releases\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.14, Page:13 \\n \\n\"\n", "#Given:\n", "H1=241.8; # in KJ/mol\n", "H2=887.2; # in KJ/mol\n", "# 1 KJ/mol = 0.0104 eV/atom\n", "\n", "#solution: part (a)\n", "e1=H1*0.0104;\n", "print\"\\n The energy release in part (a) in eV/molecule is =\",e1\n", "\n", "#solution: part (b)\n", "e2=H2*0.0104;\n", "print\"\\n The energy release in part (b) in eV/molecule is =\",e2\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.15" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.15, Page:14 \n", " \n", "\n", "\n", " The energy release in part (a) in KJ/mol of carbondioxide is = 394.912\n", "\n", " The energy release in part (b) in KJ/mol of alumina is = 1675.968\n", "\n", " The energy release in part (c) in MJ/atom of U(235) is = 19264000.0\n" ] } ], "source": [ "#cal of The energy releases\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.15, Page:14 \\n \\n\"\n", "#Given:\n", "H1=4.1; # in eV/molecule\n", "H2=17.4; # in eV/molecule\n", "H3=200;# in MeV/atom of U\n", "\n", "# 1 eV/atom = 96.32 KJ/mol\n", "\n", "#solution: part (a)\n", "e1=H1*96.32;\n", "print\"\\n The energy release in part (a) in KJ/mol of carbondioxide is =\",e1\n", "\n", "#solution: part (b)\n", "e2=H2*96.32;\n", "print\"\\n The energy release in part (b) in KJ/mol of alumina is =\",e2\n", "\n", "#solution: part (c)\n", "e3=H3*1000*96.32;# in MJ/atom of U(235)\n", "print\"\\n The energy release in part (c) in MJ/atom of U(235) is =\",e3\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.16" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.16, Page:15 \n", " \n", "\n", "\n", " The rate of energy release in W is 949251379.039\n" ] } ], "source": [ "#cal of The rate of energy release\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.16, Page:15 \\n \\n\"\n", "#Given:\n", "e=200; #MeV/ atom of U\n", "# 1 eV = 1.6*10^-19 J\n", "Na=6.023*10**23;\n", "M=0.235; # mass in Kg\n", "\n", "#solution:\n", "\n", "e1=e*1.6*10**-19*10**6;\n", "A=Na/M;\n", "e2=A*e1; # energy released in MJ/day\n", "e3=e2/(24*3600);\n", "print\"\\n The rate of energy release in W is \",e3\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.17" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.17, Page:16 \n", " \n", "\n", "\n", " The mass loss in 10^-27 Kg/He formed is = 0.046412244898\n" ] } ], "source": [ "#cal of The mass loss\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.17, Page:16 \\n \\n\"\n", "#Given:\n", "e=26.03; # in MeV\n", "\n", "#solution:\n", "\n", "loss=e/931; #in atomic mass units (u)\n", "# 1 u = 1.66*10^-27 Kg\n", "m=(loss*1.66*10**-27)/(1*10**-27);\n", "print\"\\n The mass loss in 10^-27 Kg/He formed is =\",m\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.18" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.18, Page:17 \n", " \n", "\n", "\n", " The energy loss in MeV is = 4.03123\n" ] } ], "source": [ "#cal of The energy loss\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.18, Page:17 \\n \\n\"\n", "#Given:\n", "mh=1.007825;\n", "mt=3.016049;\n", "md=2.014102;\n", "\n", "#solution:\n", "\n", "m1=(mh+mt-2*md);\n", "e=(-m1)*931; # in MeV\n", "print\"\\n The energy loss in MeV is =\",e\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.19" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.19, Page:18 \n", " \n", "\n", "\n", " The mean binding energy of tritium atom in MeV is = 2.81085817903\n", "\n", " The mean binding energy of nickel atom in MeV is = 8.71580311296\n" ] } ], "source": [ "#cal of mean binding energy of tritium and nickel atom\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.19, Page:18 \\n \\n\"\n", "#Given:\n", "mh=1.007825;\n", "mn=1.008665;\n", "mt=3.016049; # atomic mass of Tritium\n", "mNi=59.93528; # atomic mass of Nickel\n", "\n", "#solution:\n", "\n", "# part (a)\n", "\n", "B1=(1*mh+2*mn-mt)*931; # in MeV\n", "Bh=B1/mt;\n", "print\"\\n The mean binding energy of tritium atom in MeV is =\",Bh\n", "\n", "# part (b)\n", "\n", "B2=(28*mh+32*mn-mNi)*931; # in MeV\n", "Bo=B2/mNi;\n", "print\"\\n The mean binding energy of nickel atom in MeV is =\",Bo\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.20" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.20, Page:19 \n", " \n", "\n", "\n", " The mean binding energy of Cl (35) atom in MeV is = 8.52810201079\n", "\n", " The mean binding energy of Cl (37) atom in MeV is = 8.57839008383\n", "\n", " The increase in mean binding energy of Cl atom in MeV is = 0.0502880730447\n" ] } ], "source": [ "#cal of mean binding energy of Cl\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.20, Page:19 \\n \\n\"\n", "#Given:\n", "mh=1.00783;\n", "mn=1.00867;\n", "m35=34.96885; # atomic mass of Cl (35)\n", "m37=36.96590; # atomic mass of Cl (37)\n", "\n", "#solution:\n", "\n", "B1=(17*mh+18*mn-m35)*931; # in MeV\n", "Bh=B1/m35;\n", "print\"\\n The mean binding energy of Cl (35) atom in MeV is =\",Bh\n", "\n", "B2=(17*mh+20*mn-m37)*931; # in MeV\n", "Bo=B2/m37;\n", "print\"\\n The mean binding energy of Cl (37) atom in MeV is =\",Bo\n", "\n", "Bi=Bo-Bh;\n", "print\"\\n The increase in mean binding energy of Cl atom in MeV is =\",Bi\n", "\n", "# NOTE: The answer depends upon how much precise value you take for atomic masses.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.21" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.21, Page:20 \n", " \n", "\n", "\n", " The mean binding energy of Na(22) in MeV is = 7.92358978299\n", "\n", " The mean binding energy of Na(23)in MeV is = 8.11544250059\n", "\n", " The mean binding energy of Na(24) in MeV is = 8.07172719656\n" ] } ], "source": [ "#cal of mean binding energy of Na\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.21, Page:20 \\n \\n\"\n", "#Given:\n", "mh=1.0078;\n", "mn=1.0087;\n", "m22=21.99431;# atomic mass of Na 22\n", "m23=22.9898;# atomic mass of Na 23\n", "m24=23.9909;# atomic mass of Na 24\n", "\n", "#solution:\n", "\n", "# part (a)\n", "\n", "B1=((11*mh+11*mn)-m22)*931; # in MeV\n", "Bh=B1/m22;\n", "print\"\\n The mean binding energy of Na(22) in MeV is =\",Bh\n", "\n", "# part (b)\n", "\n", "B2=((11*mh+12*mn)-m23)*931; # in MeV\n", "Bo=B2/m23;\n", "print\"\\n The mean binding energy of Na(23)in MeV is =\",Bo\n", "\n", "# part (c)\n", "\n", "B3=((11*mh+13*mn)-m24)*931; # in MeV\n", "Bs=B3/m24;\n", "print\"\\n The mean binding energy of Na(24) in MeV is =\",Bs\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }