{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# chapter 1: Atomic Nucleus" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.1;pg no:2" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.1, Page:2 \n", " \n", "\n", "\n", " The electric field in V/m is = 20000.0\n", "\n", " The force in N/C is = 20000.0\n", "\n", " The force on metal sphere in N is = 7.6e-05\n" ] } ], "source": [ "#cal of elelectric field and force\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.1, Page:2 \\n \\n\"\n", "#Given:\n", "v=1000# potential\n", "d=0.05# distance\n", "q=3.8*10**-9# charge\n", "#solution:\n", "e=v/d;#electric field\n", "f=e;# force\n", "f1=f*q;# force on metal sphere\n", "print\"\\n The electric field in V/m is =\",e\n", "print\"\\n The force in N/C is =\",f\n", "print\"\\n The force on metal sphere in N is =\",f1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.2;pg no:2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.2, Page:2 \n", " \n", "\n", "The potential in V is = 80.0\n" ] } ], "source": [ "#cal of potential\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.2, Page:2 \\n \\n\"\n", "#Given:\n", "energy=2*10**-6\n", "c=2.5*10**-8# velocity of light\n", "#solution:\n", "v=energy/c# potential\n", "print\"The potential in V is =\",v" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.3;pg no:3" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.3, Page:3 \n", "\n", "The wavelength in Angstroms is = 3.88\n", "The photon wavelength in Angstroms is = 1242.38\n" ] } ], "source": [ "#cal of elecrtron and photon wavelength\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.3, Page:3 \\n\"\n", "#Given:\n", "energy=10 #in electron volts\n", "m=9.1*10**-31# mass of electron in kg\n", "h=6.626*10**-34# planck's constant J.s\n", "c=3*10**8# speed of light in m/s\n", "#solution (a):\n", "energy1=energy*1.6*10**-19# energy in J\n", "p=(2*m*energy1)**0.5# momentum\n", "wavelength=h/p*(10)**10\n", "print\"The wavelength in Angstroms is =\",round(wavelength,2)\n", "#solution (b):\n", "wavelength1=h*c/energy1*(10)**10;#photon wavelength\n", "print\"The photon wavelength in Angstroms is =\",round(wavelength1,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.4;pg no:3" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.4, Page:3 \n", " \n", "\n", "The energy in eV is = 150.77\n" ] } ], "source": [ "#cal of kinetic energy of an electron\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.4, Page:3 \\n \\n\"\n", "#Given:\n", "wavelength=10**-10\n", "m=9.1*10**-31\n", "h=6.626*10**-34\n", "#solution:\n", "p=h/wavelength\n", "e=p*p/(2*m) # energy in J\n", "e1=e/(1.6*10**-19)# energy in eV\n", "print\"The energy in eV is =\",round(e1,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.5;pg no:3" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.5, Page:3 \n", " \n", "\n", "The wavelength in 10^-5 Angstroms is = 0.66\n", "The wavelength in 10^-5 Angstroms is = 0.65\n" ] } ], "source": [ "#cal of wavelength of oxygen and nitrogen nucleus\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.5, Page:3 \\n \\n\"\n", "#Given:\n", "m=1.66*10**-27# 1u=1.66*10^-27 kg\n", "h=6.6262*10**-34#planck's constant in J.s\n", "energy1=120# in Mev for oxygen\n", "energy2=140# in MeV for nitrogen\n", "#solution(a):\n", "p=(2*m*16*energy1*(1.6022*10**-13))**0.5\n", "wavelength1=h/p*(10)**15#wavelength in 10^-5 Angstroms\n", "print\"The wavelength in 10^-5 Angstroms is =\",round(wavelength1,2)\n", "#solution (b):\n", "p=(2*m*14*energy2*(1.6022*10**-13))**0.5\n", "wavelength2=h/p*(10)**15#wavelength in 10^-5 Angstroms\n", "print\"The wavelength in 10^-5 Angstroms is =\",round(wavelength2,2)\n", "# 1 Angstrom = 10^-10 m" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.6;pg no:3" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.6, Page:3 \n", " \n", "\n", "The energy in eV is = 8275.0\n" ] } ], "source": [ "#cal of energy of a gamma photon\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.6, Page:3 \\n \\n\"\n", "#Given:\n", "wavelength=1.5*10**-10\n", "h=6.62*10**-34\n", "c=3*10**8\n", "#solution:\n", "e=(h*c)/wavelength# energy in J\n", "e1=e/(1.6*10**-19)# energy in eV\n", "print\"The energy in eV is =\",e1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.7;pg no:4" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.7, Page:4 \n", " \n", "\n", "\n", " The threshold frequency in s^-1 is = 1.23634168427e+15\n", "\n", " The threshold wavelength in Angstroms is = 2426.51\n", "\n", " The energy of photoelectrone in eV is = 3.91\n" ] } ], "source": [ "#cal of threshold frequency,wavelength,energy of photoelectrone\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.7, Page:4 \\n \\n\"\n", "#Given:\n", "E=5.12*1.6*10**-19# energy in J\n", "h=6.626*10**-34\n", "c=3*10**8\n", "wavelength=200*10**-9\n", "w=2.3# in eV\n", "#solution:\n", "tf=E/h# (part a)\n", "print\"\\n The threshold frequency in s^-1 is =\",round(tf,2)\n", "tl=c/tf*10**10# (part b)\n", "print\"\\n The threshold wavelength in Angstroms is =\",round(tl,2)\n", "e=(h*c)/(wavelength*1.6*10**-19)# photon energy in eV (part c)\n", "pe=e-w\n", "print\"\\n The energy of photoelectrone in eV is =\",round(pe,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.8;pg no:4" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.8, Page:4 \n", " \n", "\n", "\n", " The velocity of alpha particles for 1 MeV in mega m/s is = 6.94\n", "\n", " The velocity of alpha particles for 2 MeV in mega m/s is = 9.82\n", "\n", " The velocity of deuteron particles for 1 MeV in mega m/s is = 9.82\n", "\n", " The velocity of deuteron particles for 2 MeV in mega m/s is = 13.88\n", "\n", " The velocity of proton particles for 1 MeV in mega m/s is = 13.88\n", "\n", " The velocity of proton particles for 2 MeV in mega m/s is = 19.63\n" ] } ], "source": [ "#cal of velocity of alpha particles,deuteron,proton\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.8, Page:4 \\n \\n\"\n", "#Given:\n", "e1=1 # in MeV\n", "e2=2 # in MeV\n", "ma=4 # in u(amu)\n", "md=2 # in u(amu)\n", "mp=1 # in u(amu)\n", "# 1u = 1.6*10^-27 Kg\n", "#solution: part a)For alpha particles\n", "v1a=((2*e1*10**6*1.6*10**-19)/(ma*1.6605*10**-27))**.5\n", "print\"\\n The velocity of alpha particles for 1 MeV in mega m/s is =\",round(v1a/10**6,2)# For 1 MeV\n", "v2a=((2*e2*10**6*1.6*10**-19)/(ma*1.6605*10**-27))**.5\n", "print\"\\n The velocity of alpha particles for 2 MeV in mega m/s is =\",round(v2a/10**6,2)# For 2 MeV\n", "#solution: part b)For deuteron particles\n", "v1b=((2*e1*10**6*1.6*10**-19)/(md*1.6605*10**-27))**.5\n", "print\"\\n The velocity of deuteron particles for 1 MeV in mega m/s is =\",round(v1b/10**6,2) # For 1 MeV\n", "v2b=((2*e2*10**6*1.6*10**-19)/(md*1.6605*10**-27))**.5\n", "print\"\\n The velocity of deuteron particles for 2 MeV in mega m/s is =\",round(v2b/10**6,2) # For 2 MeV\n", "#solution: part c)For proton particles\n", "v1p=((2*e1*10**6*1.6*10**-19)/(mp*1.6605*10**-27))**.5\n", "print\"\\n The velocity of proton particles for 1 MeV in mega m/s is =\",round(v1p/10**6,2) # For 1 MeV\n", "v2p=((2*e2*10**6*1.6*10**-19)/(mp*1.6605*10**-27))**.5\n", "print\"\\n The velocity of proton particles for 2 MeV in mega m/s is =\",round(v2p/10**6,2) # For 2 MeV" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.9;pg no:5" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.9, Page:5 \n", " \n", "\n", "The energy in MeV is = 934.0\n" ] } ], "source": [ "#cal of The energy equivalence\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.9, Page:5 \\n \\n\"\n", "#Given:\n", "m=1./(6.023*10**23)#mass of 1 atom in g\n", "m1=m*10**-3#mass of 1 atom in Kg\n", "c=3.*10**8# velocity in m/s\n", "#solution:\n", "e=m1*c*c; # energy in J\n", "e1=e/(1.6*10**-13)# energy in MeV\n", "print\"The energy in MeV is =\",round(e1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.10;pg no:5" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.10, Page:5 \n", " \n", "\n", "The energy in eV is = 13.26\n" ] } ], "source": [ "#cal of The energy of formation\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.10, Page:5 \\n \\n\"\n", "#Given:\n", "enthalpy=1278 # enthalpy of combustion in kJ/mol\n", "#solution:\n", "energy=(enthalpy*1000)/(6.022*10**23*1.6*10**-19)\n", "print\"The energy in eV is =\",round(energy,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.11;pg no:5" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.11, Page:5 \n", " \n", "\n", "\n", " The mean binding energy of helium atom in MeV is = 7.07\n", "\n", " The mean binding energy of oxygen atom in MeV is = 7.98\n" ] } ], "source": [ "#cal of mean binding energy of helium and oxygen\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.11, Page:5 \\n \\n\"\n", "#Given:\n", "mh=1.0078\n", "mn=1.0087\n", "ma=4.0026\n", "mo=15.9949\n", "Ah=4.0026 # atomic mass of helium\n", "Ao=15.9949 # atomic mass of oxygen\n", "#solution:\n", "# part (a)\n", "B1=(2*mh+2*mn-ma)*931 # in MeV\n", "Bh=B1/Ah\n", "print\"\\n The mean binding energy of helium atom in MeV is =\",round(Bh,2)\n", "# part (b)\n", "B2=(8*mh+8*mn-mo)*931 # in MeV\n", "Bo=B2/Ao\n", "print\"\\n The mean binding energy of oxygen atom in MeV is =\",round(Bo,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.12;pg no:6" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.12, Page:6 \n", "\n", "\n", " The mean binding energy of Be atom in MeV is = 7.059\n", "From previous problem we have the avg. binding energy of helium atom is 7.08 MeV, Hence Be is unstable to fission into 2 alphas\n" ] } ], "source": [ "#cal of mean binding energy of Be atom\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.12, Page:6 \\n\"\n", "#Given:\n", "mh=1.0078;\n", "mn=1.0087;\n", "ABe=8.0053; # atomic mass of beryllium\n", "#solution:\n", "B1=(4*mh+4*mn-ABe)*931; # in MeV\n", "Bh=B1/ABe;\n", "print\"\\n The mean binding energy of Be atom in MeV is =\",round(Bh,3)\n", "print\"From previous problem we have the avg. binding energy of helium atom is 7.08 MeV, Hence Be is unstable to fission into 2 alphas\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.13;pg no:6" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.13, Page:6 \n", "\n", "The amount of coal required in Kg is = 2.5\n" ] } ], "source": [ "#cal of amount of coal\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.13, Page:6 \\n\"\n", "#Given:\n", "e=200; # in Mev\n", "m=0.235; # weight of uranium atom in Kg\n", "enthalpy=393.5; # in KJ/mol\n", "Na=6.02*10**23;\n", "#solution:\n", "e1=e*1.6*10**-19*10**6;\n", "atoms=Na/m;\n", "e2=atoms*e1;#energy released in J\n", "m1=(e2*12)/(393.5*1000*1000);# in Kg\n", "m2=m1/1000;# in tons\n", "print\"The amount of coal required in Kg is =\", round(m2/1000,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.14;pg no:7" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.14, Page:7 \n", " \n", "\n", "The energy release in part (a) in eV/molecule is = 2.51\n", "The energy release in part (b) in eV/molecule is = 9.23\n" ] } ], "source": [ "#cal of The energy releases\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.14, Page:7 \\n \\n\"\n", "#Given:\n", "H1=241.8; # in KJ/mol\n", "H2=887.2; # in KJ/mol\n", "# 1 KJ/mol = 0.0104 eV/atom\n", "#solution: part (a)\n", "e1=H1*0.0104;\n", "print\"The energy release in part (a) in eV/molecule is =\",round(e1,2)\n", "#solution: part (b)\n", "e2=H2*0.0104;\n", "print\"The energy release in part (b) in eV/molecule is =\",round(e2,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.15;pg no:7" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.15, Page:7 \n", "\n", "The energy release in part (a) in KJ/mol of carbondioxide is = 394.9\n", "The energy release in part (b) in KJ/mol of alumina is = 1676.0\n", "The energy release in part (c) in MJ/atom of U(235) is = 19.264\n" ] } ], "source": [ "#cal of The energy releases\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.15, Page:7 \\n\"\n", "#Given:\n", "H1=4.1; # in eV/molecule\n", "H2=17.4; # in eV/molecule\n", "H3=200;# in MeV/atom of U\n", "# 1 eV/atom = 96.32 KJ/mol\n", "#solution: part (a)\n", "e1=H1*96.32;\n", "print\"The energy release in part (a) in KJ/mol of carbondioxide is =\",round(e1,1)\n", "#solution: part (b)\n", "e2=H2*96.32;\n", "print\"The energy release in part (b) in KJ/mol of alumina is =\",round(e2,1)\n", "#solution: part (c)\n", "e3=H3*1000*96.32;# in MJ/atom of U(235)\n", "print\"The energy release in part (c) in MJ/atom of U(235) is =\",round(e3/10**6,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.16;pg no:7" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.16, Page:7 \n", " \n", "\n", "\n", " The rate of energy release in MW is= 949.25\n" ] } ], "source": [ "#cal of The rate of energy release\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.16, Page:7 \\n \\n\"\n", "#Given:\n", "e=200.; #MeV/ atom of U\n", "# 1 eV = 1.6*10^-19 J\n", "Na=6.023*10**23;\n", "M=0.235; # mass in Kg\n", "#solution:\n", "e1=e*1.6*10**-19*10**6;\n", "A=Na/M;\n", "e2=A*e1; # energy released in MJ/day\n", "e3=e2/(24.*3600.);\n", "print\"\\n The rate of energy release in MW is=\",round(e3/10**6,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.17;pg no:8" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.17, Page:8 \n", " \n", "\n", "\n", " The mass loss in 10^-27 Kg/He formed is = 0.0464\n" ] } ], "source": [ "#cal of The mass loss\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.17, Page:8 \\n \\n\"\n", "#Given:\n", "e=26.03; # in MeV\n", "#solution:\n", "loss=e/931; #in atomic mass units (u)\n", "# 1 u = 1.66*10^-27 Kg\n", "m=(loss*1.66*10**-27)/(1*10**-27);\n", "print\"\\n The mass loss in 10^-27 Kg/He formed is =\",round(m,4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.18;pg no:8" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.18, Page:8 \n", "\n", "\n", " The energy loss in MeV is = -4.0312\n" ] } ], "source": [ "#cal of The energy loss\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.18, Page:8 \\n\"\n", "#Given:\n", "mh=1.007825;\n", "mt=3.016049;\n", "md=2.014102;\n", "#solution:\n", "m1=(mh+mt-2*md);\n", "e=(-m1)*931; # in MeV\n", "print\"\\n The energy loss in MeV is =\",round(-e,4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.19;pg no:8" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.19, Page:8 \n", "\n", "The mean binding energy of tritium atom in MeV is = 2.811\n", "The mean binding energy of nickel atom in MeV is = 8.716\n" ] } ], "source": [ "#cal of mean binding energy of tritium and nickel atom\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.19, Page:8 \\n\"\n", "#Given:\n", "mh=1.007825;\n", "mn=1.008665;\n", "mt=3.016049; # atomic mass of Tritium\n", "mNi=59.93528; # atomic mass of Nickel\n", "#solution:\n", "# part (a)\n", "B1=(1*mh+2*mn-mt)*931; # in MeV\n", "Bh=B1/mt;\n", "print\"The mean binding energy of tritium atom in MeV is =\",round(Bh,3)\n", "# part (b)\n", "B2=(28*mh+32*mn-mNi)*931; # in MeV\n", "Bo=B2/mNi;\n", "print\"The mean binding energy of nickel atom in MeV is =\",round(Bo,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.20;pg no:9" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.20, Page:9 \n", "\n", "The mean binding energy of Cl (35) atom in MeV is = 8.5281\n", "The mean binding energy of Cl (37) atom in MeV is = 8.5784\n", "The increase in mean binding energy of Cl atom in MeV is = 0.05\n" ] } ], "source": [ "#cal of mean binding energy of Cl\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.20, Page:9 \\n\"\n", "#Given:\n", "mh=1.00783;\n", "mn=1.00867;\n", "m35=34.96885; # atomic mass of Cl (35)\n", "m37=36.96590; # atomic mass of Cl (37)\n", "#solution:\n", "B1=(17*mh+18*mn-m35)*931; # in MeV\n", "Bh=B1/m35;\n", "print\"The mean binding energy of Cl (35) atom in MeV is =\",round(Bh,4)\n", "B2=(17*mh+20*mn-m37)*931; # in MeV\n", "Bo=B2/m37;\n", "print\"The mean binding energy of Cl (37) atom in MeV is =\",round(Bo,4)\n", "Bi=Bo-Bh;\n", "print\"The increase in mean binding energy of Cl atom in MeV is =\",round(Bi,2)\n", "# NOTE: The answer depends upon how much precise value you take for atomic masses." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##example 1.21;pg no:9" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Example 1.21, Page:9 \n", " \n", "\n", "\n", " The mean binding energy of Na(22) in MeV is = 7.9236\n", "\n", " The mean binding energy of Na(23)in MeV is = 8.1154\n", "\n", " The mean binding energy of Na(24) in MeV is = 8.0717\n" ] } ], "source": [ "#cal of mean binding energy of Na\n", "#intiation of all variables\n", "# Chapter 1\n", "print\"Example 1.21, Page:9 \\n \\n\"\n", "#Given:\n", "mh=1.0078;\n", "mn=1.0087;\n", "m22=21.99431;# atomic mass of Na 22\n", "m23=22.9898;# atomic mass of Na 23\n", "m24=23.9909;# atomic mass of Na 24\n", "#solution:\n", "# part (a)\n", "B1=((11*mh+11*mn)-m22)*931; # in MeV\n", "Bh=B1/m22;\n", "print\"\\n The mean binding energy of Na(22) in MeV is =\",round(Bh,4)\n", "# part (b)\n", "B2=((11*mh+12*mn)-m23)*931; # in MeV\n", "Bo=B2/m23;\n", "print\"\\n The mean binding energy of Na(23)in MeV is =\",round(Bo,4)\n", "# part (c)\n", "B3=((11*mh+13*mn)-m24)*931; # in MeV\n", "Bs=B3/m24;\n", "print\"\\n The mean binding energy of Na(24) in MeV is =\",round(Bs,4)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }