{ "metadata": { "name": "", "signature": "sha256:a1991f0c2ad3cdd162c5a3598633b434636cdfbb3e50ee12bef51cec75158259" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1 - Differential Amplifiers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.8 - pg:19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "BETAac=100 #unitless\n", "BETAdc=100 #unitless\n", "VBE3=0.715 #in volts\n", "VD1=0.715 #in Volts\n", "VZ=6.2 #in Volts\n", "VT=25 #in mVolts\n", "IZt=41 #in mA \n", "VCC=10 #in Volts\n", "VEE=-10 #in Volts\n", "RC1=2.7 #in kohm\n", "RC=4.7 #in kohm\n", "#Part (a)\n", "VB3=VEE+VZ+VD1 #in volts\n", "VE3=VB3-VBE3\n", "IE3=(VE3-VEE)/RC1 #in mA\n", "#As the differential amplifier is symmetrical, ICQ1=IE1=ICQ2=IE2\n", "IE2=IE3/2 #in mA\n", "ICQ1=IE2 #in mA\n", "ICQ2=IE2 #in mA\n", "IE1=IE2 #in mA\n", "VCEQ=VCC+VBE3-RC*ICQ1# formula for VCEQ \n", "print \"Operating point for Q1 and Q2 are : \"\n", "print \"VCEQ is \",round(VCEQ,2),\" V\"\n", "print \"ICQ is \",round(ICQ1,2),\" mA\"\n", "print \"and the operating point for Q3 will be : \"\n", "VCE3=-VBE3-VE3 #in Volts\n", "print \"VCE3 is \",round(VCE3,2),\" V\"\n", "IC3=IE3 #in mA\n", "print \"IE3 is \",round(IE3,2),\" mA\"\n", "#Part (b)\n", "re=(2*VT)/IC3 #in ohm\n", "Ad=(RC*1000)/re #unitless\n", "print \"Differential voltage gain is \",round(Ad,2)\n", "#Part (c)\n", "Ri=2*BETAac*re #in ohm\n", "Ri/=1000 # kohm\n", "print \"Input resistance is \",round(Ri,2),\" kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Operating point for Q1 and Q2 are : \n", "VCEQ is 5.32 V\n", "ICQ is 1.15 mA\n", "and the operating point for Q3 will be : \n", "VCE3 is 3.08 V\n", "IE3 is 2.3 mA\n", "Differential voltage gain is 215.85\n", "Input resistance is 4.35 kohm\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.9 : pg-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "Io=180 #in uA\n", "Vcc=20 #in Volts\n", "VBE=0.7 #in Volts\n", "BETA=120 #unitless\n", "IR=Io*(1+2/BETA) #in uA\n", "R=(Vcc-VBE)/(IR*10**-3) #in kohm\n", "print \"Value of IR is \",round(IR,2),\" uA\"\n", "print \"Value of R is \",round(R,2),\" kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of IR is 180.0 uA\n", "Value of R is 107.22 kohm\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.16 : pg-31" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "BETAac=100 #unitless\n", "BETAdc=100 #unitless\n", "VBEon=0.7 #in volts\n", "VCC=5 #in volts\n", "VEE=-5 #in volts\n", "VT=25 #in mVolts\n", "R=18.6 #in kohm\n", "Ad=200 #unitless\n", "IR=(VCC-VBEon -VEE)/R #in mA\n", "IC1=IR/2 #in mA\n", "IC2=IC1 #in mA\n", "re1=(2*VT)/IR #in ohm\n", "re2=re1 #in ohm\n", "RC=Ad*re1*10**-3 #in kohm\n", "print \"Rc is \",round(RC,2),\" kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rc is 20.0 kohm\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.18 : pg-33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "Iload=20 #in uA\n", "VBE=0.7 #in volts\n", "VCC=10 #in Volts\n", "IR=Iload #in mA\n", "R=(VCC-2*VBE)/(IR*10**-3) #in kohm\n", "print \"R is \",round(R,2),\" kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R is 430.0 kohm\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exa 1.23 : pg-26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given data\n", "Vo=5 #in volts\n", "BETAac=150 #unitless\n", "BETAdc=150 #unitless\n", "VT=25 #in mV\n", "VCC=10 #in mV\n", "VD=0.7 #in mV\n", "R1=2.7 #in kohm\n", "R2=1.5 #in kohm\n", "# part (i) #\n", "# IC1/IC2=exp((VBE1-VBE2)/VT)\n", "# Writing KVL for the loop\n", "IR=(VCC-VD)/R1 #in mA\n", "IC=(IR-VD/R2)/(1+2/BETAac) #in mA\n", "IC1=IC #in mA\n", "IC2=IC #in mA\n", "RC=(VCC-Vo)/IC #in kohm\n", "print \"IC1 is \",round(IC1,2),\" mA\"\n", "print \"IC2 is \",round(IC2,2),\" mA\"\n", "print \"RC is \",round(RC,2),\" kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "IC1 is 2.98 mA\n", "IC2 is 2.98 mA\n", "RC is 1.68 kohm\n" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }