{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter4 - Three phase transformers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.1 Pg No: 329" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Value of line currents = 276.74 Amperes\n" ] } ], "source": [ "#Caption:Find the value of line current\n", "\n", "a=2200./200##transformation ratio\n", "P=450*1000. # watts\n", "pf=0.85\n", "V_s=200. # volts\n", "I_2=P/(pf*V_s) # amperes\n", "I_1=1.15*I_2/a\n", "print 'Value of line currents = %.2f Amperes'%I_1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.2 Pg No: 329" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Value of line current = 312.71 Amperes\n" ] } ], "source": [ "import numpy as np\n", "#Caption:Find the value of line current\n", "\n", "a=2200./200##transformation ratio\n", "P_1=400.*1000 # watts\n", "P_2=500.*1000 # watts\n", "pf=0.8\n", "V_s=200. # volts\n", "I_2=P_1/(pf*V_s) # amperes\n", "I_1=1.15*I_2/a\n", "I_1T=I_1/2\n", "I_2M=P_2/(pf*V_s*a)\n", "I_p=np.sqrt((I_1T**2)+(I_2M**2))\n", "print 'Value of line current = %.2f Amperes'%I_p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.3 Pg No: 330" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)Efficiency at full load and 0.85pf = 95.67 %\n", "(b)Efficiency at 75 percent of full load and unity pf = 95.84 %\n", "(c)max efficieny at unity pf = 97.09 %\n" ] } ], "source": [ "#Caption:Determine the efficiency of transformer at (a)full load and 0.85pf (b)75 percent of full load and unity pf (c)max efficieny at unity pf\n", "\n", "P=100*1000 # watts\n", "P_iron=1500 # watts\n", "x=0.8\n", "P_cu=1500/x**2 # watts\n", "pf=0.8\n", "a=5000/400##transformation ratio\n", "P_t=P_iron+P_cu\n", "P_o=0.85*P # watts\n", "Eff=P_o/(P_o+P_t)\n", "print '(a)Efficiency at full load and 0.85pf = %.2f %%'%(Eff*100)\n", "P_cu_1=0.75*P_cu # watts\n", "P_t_1=P_cu_1+P_iron # watts\n", "P_o_1=0.75*P\n", "Eff_1=P_o_1/(P_o_1+P_t_1)\n", "print '(b)Efficiency at 75 percent of full load and unity pf = %.2f %%'%(Eff_1*100)\n", "P_t_2=2.*P_iron\n", "P_o_2=P\n", "Eff_2=P_o_2/(P_o_2+P_t_2)\n", "print '(c)max efficieny at unity pf = %.2f %%'%(Eff_2*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.4 Pg No: 331" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "For Star-Delta Configruation\n", "Line voltage = 190.53 volts\n", "Line current = 173.21 amperes\n", "Output = 57157.68 watts\n", "For Delta-Star Configruation\n", "Line voltage = 571.58 volts\n", "Line current = 57.74 amperes\n", "Output = 57157.68 watts\n" ] } ], "source": [ "import numpy as np\n", "#Caption:Find the value of line voltage,line current,and output when the transformer winding is connected as (a) Star-delta (b)delta-star\n", "\n", "a=10. ##transformation ratio\n", "V_s=3300. # volts\n", "I_1=10. # amperes\n", "V_1=V_s/np.sqrt(3)\n", "V_2=V_1/a\n", "I_2=np.sqrt(3)*a*I_1\n", "P_o=np.sqrt(3)*V_2*I_2\n", "print \"For Star-Delta Configruation\"\n", "print 'Line voltage = %.2f volts'%V_2\n", "print 'Line current = %.2f amperes'%I_2\n", "print 'Output = %.2f watts'%P_o\n", "V_2p=V_s/a\n", "V_2L=np.sqrt(3)*V_2p\n", "I_2L=I_1*a/np.sqrt(3)\n", "P_o2=np.sqrt(3)*V_2*I_2\n", "print \"For Delta-Star Configruation\"\n", "print 'Line voltage = %.2f volts'%V_2L\n", "print 'Line current = %.2f amperes'%I_2L\n", "print 'Output = %.2f watts'%P_o2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.5 Pg No: 332" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Efficiency = 93.29 %\n" ] } ], "source": [ "import numpy as np\n", "#Caption:Find the Efficiency\n", "\n", "P=1200.*1000 # watts\n", "R_1=2.# ohms\n", "R_2=0.03 # ohms\n", "P_iron=20000. # watts\n", "V_1p=6600. # volts\n", "V_2p=1100./np.sqrt(3) # volts\n", "a=V_1p/V_2p\n", "R_o2=R_2+(R_1/a**2) # ohms\n", "I_2p=P/(np.sqrt(3)*1100) # amperes\n", "P_cu=3*R_o2*I_2p**2\n", "P_t=P_iron+P_cu\n", "P_o=0.9*P # watts\n", "Eff=P_o/(P_o+P_t)\n", "print 'Efficiency = %.2f %%'%(Eff*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.6 Pg No: 332" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "% Resistance drop = 2.00 %\n", "% Reactance drop = 4.08 %\n", "Voltage regulation = 4.43 %\n", "Efficiency = 95.62 %\n" ] } ], "source": [ "import math as mt\n", "#Caption:Find the percentage resistance,reactance drop,efficiency and voltage regulation\n", "\n", "P=1500.*1000 # watts\n", "phy=mt.acos(0.8)*180/mt.pi\n", "V_1P=300 # volts\n", "V_1L=6600 # volts\n", "I_1P=131.21/mt.sqrt(3)\n", "Z_1=V_1P/I_1P # ohms\n", "R_1=30*1000/(3*I_1P**2)\n", "X_1=mt.sqrt((Z_1**2)-(R_1**2))\n", "R=I_1P*R_1*100/V_1L\n", "X=I_1P*X_1*100/V_1L\n", "print '%% Resistance drop = %.2f %%'%R\n", "print '%% Reactance drop = %.2f %%'%X\n", "VR=(R*mt.cos(phy*180/mt.pi))+(X*mt.sin(phy*180/mt.pi))\n", "print 'Voltage regulation = %.2f %%'%VR\n", "I_1_FL=P/(mt.sqrt(3)*V_1L)\n", "P_t=(30+25)*1000 # watts\n", "P_o=P*0.8 # watts\n", "Eff=P_o/(P_o+P_t)\n", "print 'Efficiency = %.2f %%'%(Eff*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.7 Pg No: 334" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)KVA Load supplied by each transformer = 28.87 KVA\n", "(b)Percent of rated load = 1.15 %\n", "(c)Total KVA rating = 43.30 KVA\n", "(d)Ratio=0.577\n", "(e)Increase in load = 173.21 %\n" ] } ], "source": [ "import numpy as np\n", "#Caption:Determine the (a)KVA Load (b)Percentage rated load (c)Total KVA Rating (d)Ratio of star-star bank to delta-delta bank transformer rating (e)% increase in load\n", "\n", "KVA=25.\n", "KVA_s=50./np.sqrt(3)\n", "print '(a)KVA Load supplied by each transformer = %.2f KVA'%KVA_s\n", "r=KVA_s/KVA\n", "print '(b)Percent of rated load = %.2f %%'%r\n", "KVA_t=2*25*0.866\n", "print '(c)Total KVA rating = %.2f KVA'%KVA_t\n", "ratio=KVA_t/75\n", "print '(d)Ratio=%.3f'%ratio\n", "KVA_s2=50./3\n", "Inc=KVA_s/KVA_s2\n", "print '(e)Increase in load = %.2f %%'%(Inc*100)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa:4.8 Pg No: 335" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)Currents in sections Oa,Ob and Oc = 131.22 amperes\n", " Currents in sections Aa,Bb and Cc = 524.86 amperes\n", "(b)Power transformed by transformer action = 80.00 Kw\n", "(c)Power Conducted directly = 320.00 Kw\n" ] } ], "source": [ "import numpy as np\n", "#Caption:Determine the (a)Current flowing in various sections (b)Power transformed (c)Power conducted directly\n", "\n", "P=400.*1000 # watts\n", "pf=0.8\n", "V_1=550. # volts\n", "V_2=440. # volts\n", "I_2=P/(np.sqrt(3)*V_2*pf)## in amperes\n", "I_1=I_2*V_2/V_1 # amperes\n", "I=I_2-I_1\n", "print '(a)Currents in sections Oa,Ob and Oc = %.2f amperes'%I\n", "print ' Currents in sections Aa,Bb and Cc = %.2f amperes'%I_1\n", "P_trans=P*(1-(V_2/V_1))\n", "print '(b)Power transformed by transformer action = %.2f Kw'%(P_trans/1000)\n", "P_cond=P-P_trans\n", "print '(c)Power Conducted directly = %.2f Kw'%(P_cond/1000)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }