{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1 - Semiconductor Material & Junction Diode" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.1 Page No 51" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The electron drift velocity = 40.00 m/s\n", "The time required for an electron to move across the thickness = 12.50 micro seconds\n" ] } ], "source": [ "# Given data\n", "miu = 0.2# m**2/V-s\n", "V = 100# mV\n", "V = V * 10**-3# V\n", "d = 0.5# mm\n", "d = d * 10**-3# m\n", "# mobility, miu = Vd/E and\n", "E = V/d\n", "# Drift velocity,\n", "Vd = miu*E# m/s\n", "print \"The electron drift velocity = %.2f m/s\"%Vd\n", "# Time required,\n", "T = d/Vd# sec\n", "T=T*10**6# µs\n", "print \"The time required for an electron to move across the thickness = %.2f micro seconds\"%T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.2 Page No 52" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The intrinsic conductivity = 2.24 (ohm-m)**-1\n" ] } ], "source": [ "# Given data\n", "q = 1.6*10**-19# C\n", "n_i = 2.5*10**19# /m**3\n", "miu_n = 0.38# m**2/V-s\n", "miu_p = 0.18# m**2/V-s\n", "# The intrinsic conductivity for germanium,\n", "sigma_i = q*n_i*(miu_n+miu_p)# (ohm-m)**-1\n", "print \"The intrinsic conductivity = %.2f (ohm-m)**-1\"%sigma_i" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.3 Page No 52" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The intrinsic carrier concentration = 2.16e+19 per m**3\n" ] } ], "source": [ "# Given data\n", "rho = 0.50# ohm-m\n", "q = 1.6*10**-19# C\n", "miu_n = 0.39# m**2/V-s\n", "miu_p = 0.19# m**2/V-s\n", "sigma = 1/rho# (ohm-m)**-1\n", "#conductivity of a semiconductor, sigma = q*n_i*(miu_p+miu_n) or\n", "n_i = sigma/(q*(miu_n+miu_p))# /m**3\n", "print \"The intrinsic carrier concentration = %.2e per m**3\"%n_i" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.4 Page No 52" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The conductivity of Si sample = 14.40 (ohm-m)**-1\n" ] } ], "source": [ "# Given data\n", "N_D = 10**21# /m**3\n", "N_A = 5*10**20# /m**3\n", "NdasD = N_D-N_A# /m**3\n", "n = NdasD# /m**3\n", "miu_n = 0.18# m**2/V-s\n", "q = 1.6*10**-19# C\n", "# The conductivity of silicon,\n", "sigma = q*n*miu_n# (ohm-m)**-1\n", "print \"The conductivity of Si sample = %.2f (ohm-m)**-1\"%sigma" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.5 Page No 53" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The conductivity of copper = 4.79e+05 mho/cm\n" ] } ], "source": [ "# Given data\n", "At = 63.54## atomic weight of copper\n", "d = 8.9## density = %.2f gm/cm**3\n", "n = 6.023*10**23/At*d# electron/cm**3\n", "q = 1.63*10**-19# C\n", "miu = 34.8# m**2/V-s\n", "# The conductivity of copper,\n", "sigma = n*q*miu# mho/cm\n", "print \"The conductivity of copper = %.2e mho/cm\"%sigma" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.6 Page No 53" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Concentration of holes in a p-type Ge = 3.47e+17 /cm**3\n", "The concentration of electrons in a p-type Ge = 1.80e+09 /cm**3\n", "The concentration of electrons in n-type Si = 4.81e+14 /cm**3\n", "The concentration of holes in n-type Si = 4.68e+05 /cm**3\n" ] } ], "source": [ "# Given data\n", "sigma = 100# (ohm-m)**-1\n", "n_i = 2.5*10**13# /cm**3\n", "miu_n = 3800# cm**2/V-s\n", "miu_p = 1800# cm**2/V-s\n", "q = 1.6*10**-19# C\n", "# Conductivity of a p-type germanium, sigma = q*p*miu_p or\n", "p = sigma/(q*miu_p)# /cm**3\n", "print \"Concentration of holes in a p-type Ge = %.2e /cm**3\"%p\n", "# The concentration of electrons = %.2f a p-type Ge\n", "n = (n_i**2)/p# /cm**3\n", "print \"The concentration of electrons in a p-type Ge = %.2e /cm**3\"%n\n", "#Given for Si\n", "sigma= 0.1# (ohm m)**-1\n", "miu_n= 1300# cm**2/V-sec\n", "n_i= 1.5*10**10# /cm**3\n", "#sigma = q*n*miu_n\n", "n = sigma/(q*miu_n)# /cm**3\n", "print \"The concentration of electrons in n-type Si = %.2e /cm**3\"%n\n", "# The concentration of holes = %.2f n-type Si\n", "p = (n_i**2)/n# /cm**3\n", "print \"The concentration of holes in n-type Si = %.2e /cm**3\"%p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.7 Page No 54" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resistivity of a dopped Ge = 3.72 ohm-cm\n" ] } ], "source": [ "# Given data\n", "miu_n = 3800## cm**2/V-s\n", "miu_p = 1800## cm**2/V-s\n", "n_i = 2.5*10**13# /cm**3\n", "Nge = 4.41*10**22# /cm**3\n", "q = 1.602*10**-19# C\n", "impurity = 10**8\n", "# The number of donor atoms,\n", "N_D = Nge/impurity##in /cm**3\n", "# The number of holes\n", "p = (n_i**2)/N_D# /cm**3\n", "# Conductivity of an N-type Ge,\n", "sigma = q*N_D*miu_n# (ohm-cm)**-1\n", "# The resistivity of the Ge\n", "rho = 1/sigma# ohm-cm\n", "print \"The resistivity of a dopped Ge = %.2f ohm-cm\"% rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.8 Page No 54" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resistivity of intrinsic silicon = 2.25e+05 ohm-cm\n", "The resistivity of doped silicon = 4.67 ohm-cm\n" ] } ], "source": [ "# Given data\n", "Nsi = 4.96*10**22# /cm**3\n", "n_i = 1.52*10**10# /cm**2\n", "q = 1.6*10**-19# C\n", "miu_n = 0.135# m**2/V-s\n", "miu_n = miu_n * 10**4# cm**2/V-s\n", "miu_p = 0.048# m**2/V-s\n", "miu_p = miu_p * 10**4# cm**2/V-s\n", "# The conductivity of an intrinsic silicon,\n", "sigma = q*n_i*(miu_n+miu_p)# (ohm-cm)**-1\n", "# The resistivity of intrinsic silicon \n", "rho = 1/sigma# ohm-cm\n", "print \"The resistivity of intrinsic silicon = %.2e ohm-cm\"%rho\n", "\n", "impurity = 50*10**6\n", "# The number of donor atoms,\n", "N_D = Nsi/impurity# /cm**3\n", "# Total free electrons,\n", "n = N_D# /cm**3\n", "# Total holes = %.2f a doped Si,\n", "p = (n_i**2)/n# /cm**3\n", "# Conductivity of a doped Si,\n", "sigma = q*n*miu_n# (ohm-m)**-1\n", "# The resistivity of doped silicon\n", "rho = 1/sigma# ohm-cm\n", "print \"The resistivity of doped silicon = %.2f ohm-cm\"%rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.9 Page No 55" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of temperature = 0.14 K\n" ] } ], "source": [ "# Given data\n", "N_D= 5.0*10**28/(2.0*10**8)\n", "# The Fermi level, E_F= E_C if,\n", "N_C= N_D\n", "# Formula N_C= 4.82*10**21*T**(3/2)\n", "T= (N_C/(4.82*10**21.0))**(2.0/3)# K\n", "print \"The value of temperature = %.2f K\"%T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.10 Page No 55" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The miniority carrier concentration = 0.10 m**2/V-s\n", "The resistivity = 0.60 ohm-m\n", "The position of Fermi level = 0.23 eV\n", "Minority carrier concentration = 9.00e+12 atoms/cm**3\n" ] } ], "source": [ "import math\n", "# Given data\n", "n_i = 1.5*10**16##m**3\n", "impurity = 10**20\n", "minority = (n_i**2)/impurity# atoms/m**3\n", "q = 1.6*10**-19# C\n", "rho = 2*10**3# ohm-m\n", "# The miniority carrier concentration \n", "miu_n = 1/(q*rho*n_i*2)##in m**2/V-s\n", "print \"The miniority carrier concentration = %.2f m**2/V-s\"%miu_n\n", "n = impurity\n", "# The conductivity,\n", "sigma = q*impurity*miu_n# (ohm-m)**-1\n", "# The resistivity \n", "rho = 1/sigma# ohm-m\n", "print \"The resistivity = %.2f ohm-m\"%rho\n", "kT = 0.026# eV\n", "n_o = n\n", "# The position of Fermi level \n", "E_FdividedEi = kT*math.log(n_o/n_i)# eV\n", "print \"The position of Fermi level = %.2f eV\"%E_FdividedEi\n", "# Minority carrier concentration \n", "M = ((n_i*2)**2)/n_o# atoms/cm**3\n", "print \"Minority carrier concentration = %.2e atoms/cm**3\"%M" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.11 Page No 56" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resistivity = 9.62 ohm-cm\n" ] } ], "source": [ "# Given data\n", "d = 5.0*10**22# atoms/cm**3\n", "impurity = 10**8# atoms\n", "N_D = d/impurity\n", "n_i = 1.45*10**10\n", "n = N_D\n", "#Low of mass action, n*p = (n_i**2)\n", "p = (n_i**2)/n# /cm**3\n", "q = 1.6*10**-19# C\n", "miu_n = 1300# cm/V-s\n", "n_i = n\n", "#The Conductivity\n", "sigma = q*miu_n*n_i# (ohm-cm)**-1\n", "# The resistivity\n", "rho = 1/sigma# ohm-cm\n", "print \"The resistivity = %.2f ohm-cm\"%rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.12 Page No 57" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resistivity = 9.62 ohm-cm\n" ] } ], "source": [ "# Given data\n", "d = 5.0*10**22# atoms/cm**3\n", "impurity = 10**8# atoms\n", "N_D = d/impurity\n", "n_i = 1.45*10**10\n", "n = N_D\n", "#Low of mass action, n*p = (n_i**2)\n", "p = (n_i**2)/n# /cm**3\n", "q = 1.6*10**-19# C\n", "miu_n = 1300# cm/V-s\n", "n_i = n\n", "#The Conductivity\n", "sigma = q*miu_n*n_i# (ohm-cm)**-1\n", "# The resistivity\n", "rho = 1/sigma# ohm-cm\n", "print \"The resistivity = %.2f ohm-cm\"%rho" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.14 Page No 58" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The minority carrier concentration = 2.25e+03 holes/cm**3\n", "The location of Fermi level = 0.409 eV\n" ] } ], "source": [ "import math\n", "# Given data\n", "n_i = 1.5*10**10# electrons/cm**3\n", "N_D = 10**17# electrons/cm**3\n", "n = N_D# electrons/cm**3\n", "# The minority carrier concentration\n", "p = (n_i**2)/n# holes/cm**3\n", "print \"The minority carrier concentration = %.2e holes/cm**3\"%p\n", "kT = 0.026\n", "# The location of Fermi level \n", "E_FminusEi = kT*math.log(N_D/n_i)# eV\n", "print \"The location of Fermi level = %.3f eV\"%E_FminusEi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.15 Page No 59" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The doping level = 1.92e+15 /cm**3\n", "The drift velocity = 650.00 cm/sec\n" ] } ], "source": [ "# Given data\n", "V = 1# V\n", "I = 8# mA\n", "I = I * 10**-3# A\n", "R = V/I# ohm\n", "l = 2# mm\n", "l = l * 10**-1# cm\n", "b = 2# mm\n", "b = b * 10**-1# cm\n", "A = l*b# cm**2\n", "L = 2# cm\n", "# R = (rho*L)/A\n", "sigma = L/(R*A)# (ohm-cm)**-1\n", "# n = N_D\n", "miu_n = 1300# cm**2/V-s\n", "q = 1.6 * 10**-19# C\n", "# sigma = n*q*miu_n\n", "N_D = sigma/( miu_n*q )# /cm**3\n", "print \"The doping level = %.2e /cm**3\"%N_D\n", "d = 2.0\n", "E = V/d\n", "# The drift velocity \n", "Vd = miu_n * E# cm/s\n", "print \"The drift velocity = %.2f cm/sec\"%Vd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.17 Page No 60" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The conductivity = 4.68e+05 mho/m\n", "The mobility = 3.48e-05 m**2/V-s\n", "The drift velocity = 1.79e-04 m/s\n" ] } ], "source": [ "import math\n", "# Given data\n", "l = 1000# ft\n", "l = l * 12*2.54# cm\n", "R = 6.51# ohm\n", "rho = R/l# ohm/cm\n", "# The conductivity \n", "sigma = 1/rho# mho/cm\n", "sigma = sigma * 10**2# mho/m\n", "D= 1.03*10**-3# m\n", "A= math.pi*D**2/4# m**2\n", "print \"The conductivity = %.2e mho/m\"%sigma\n", "q = 1.6*10**-19# C\n", "n = 8.4*10**28# electrons/m**3\n", "# sigma = n*q*miu\n", "miu = sigma/(n*q)# m**2/V-s\n", "print \"The mobility = %.2e m**2/V-s\"%miu\n", "T = 2\n", "# The drift velocity \n", "V = T/(n*q*A)# m/s\n", "print \"The drift velocity = %.2e m/s\"%V" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.18 Page No 61" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The concentration of holes = 1.50e+16 /cm**3\n", "The concentartion of electrons = 6.67e+07 /cm**3\n" ] } ], "source": [ "# Given data\n", "N_D = 2*10**16# /cm**3\n", "N_A = 5*10**15# /cm**3\n", "# The concentration of holes \n", "Pp = N_D-N_A# /cm**3\n", "print \"The concentration of holes = %.2e /cm**3\"%Pp\n", "n_i = 10**12\n", "# The concentartion of electrons \n", "n_p = (n_i**2)/Pp# /cm**3\n", "print \"The concentartion of electrons = %.2e /cm**3\"%n_p" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.19 Page No 62" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The hall angle = 1.95 degree\n" ] } ], "source": [ "import math\n", "# Given data\n", "rho = 0.005# ohm-m\n", "Bz = 0.48# Wb/m**2\n", "R_H = 3.55*10**-4# m**3/C\n", "ExByJx= rho\n", "# R_H = Ey/(Bz*Jx)\n", "EyByJx= R_H*Bz\n", "# The hall angle \n", "theta_H = math.degrees(math.atan(EyByJx/ExByJx))# °\n", "print \"The hall angle = %.2f degree\"%theta_H" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.20 Page No 63" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The voltage between contacts = 0.0026 V\n" ] } ], "source": [ "# Given data\n", "R_H = 3.55 * 10**-4# m**3/C\n", "Ix = 15# mA\n", "Ix = Ix * 10**-3# A\n", "A = 15*1# mm\n", "A = A * 10**-6# m**2\n", "Bz = 0.48# Wb/m**2\n", "Jx = Ix/A# A/m**2\n", "# R_H = Ey/(Bz*Jx)\n", "Ey = R_H*Bz*Jx# V/m\n", "# voltage between contacts \n", "Voltage = Ey*Ix# V\n", "print \"The voltage between contacts = %.4f V\"%Voltage" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.21 Page No 63" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The concentration of donor atoms = 4.630e+13 cm**-3\n" ] } ], "source": [ "# Given data\n", "A = 0.001# cm**2\n", "l = 20# µm\n", "l = l * 10**-4# cm\n", "V = 20# V\n", "I = 100# mA\n", "I = I * 10**-3# A\n", "R = V/I# ohm\n", "# R = l/(sigma*A)\n", "sigma = l/(R*A)# (ohm-cm)**-1\n", "miu_n = 1350# cm**2/V-s\n", "q = 1.6*10**-19# C\n", "# sigma = n*q*miu_n or\n", "# The concentration of donor atoms \n", "n = sigma/(q*miu_n)# cm**-3\n", "print \"The concentration of donor atoms = %.3e cm**-3\"%n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.22 Page No 64" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The doping needed = 8.681e+15 cm**-3\n" ] } ], "source": [ "# Given data\n", "R = 2# k ohm\n", "R = R * 10**3# ohm\n", "L = 200# µm\n", "L = L * 10**-4# cm\n", "A = 10**-6# cm**2\n", "miu_n = 8000# cm**2/V-s\n", "q = 1.6*10**-19# C\n", "n = '0.9*N_D'\n", "# R = (rho*l)/A= (1/(n*q*miu_n))*(l/A)\n", "# rho = L/(R*q*miu_n*A)\n", "n = L/(R*q*miu_n*A)# /cm**-3\n", "# The doping needed \n", "Nd= n/0.9\n", "print \"The doping needed = %.3e cm**-3\"%Nd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.23 Page No 65" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The position of the Fermi level = 0.29 eV\n" ] } ], "source": [ "import math\n", "# Given data\n", "KT = 26*10**-3\n", "Nd = 10**15\n", "n_i = 1.5*10**10\n", "# The position of the Fermi level \n", "E_FminusE_Fi = KT*math.log(abs( Nd/n_i ))# eV\n", "print \"The position of the Fermi level = %.2f eV\"%E_FminusE_Fi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.24 Page No 65" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The concentration of donors atoms = 1.2176e+16 cm**-3\n" ] } ], "source": [ "import math\n", "# Given data\n", "Na = 5 * 10**15# cm**-3\n", "Nc = 2.8 * 10**19# cm**-3\n", "E_CminusE_F = 0.215# eV\n", "KT = 26* 10**-3# eV\n", "# The concentration of donors atoms \n", "Nd = Na + Nc * (math.exp( -E_CminusE_F/KT ))# cm**-3\n", "print \"The concentration of donors atoms = %.4e cm**-3\"%Nd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.25 Page No 65" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage doping efficiency = 78.12 %\n" ] } ], "source": [ "# Given data\n", "Nd = 10**18\n", "R = 10# ohm\n", "A =10**-6# cm**2\n", "L = 10# mm\n", "L = L * 10**-4# cm\n", "miu_n = 800# cm**2/V-s\n", "q = 1.6*10**-19# C\n", "#Formula used, n = L/(q*miu_n*A*R)\n", "n = L/(q*miu_n*A*R)# cm**-3\n", "# The percentage doping efficiency \n", "doping = (n/Nd)*100## % doping efficiency in %\n", "print \"The percentage doping efficiency = %.2f %%\"%doping" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.26 Page No 66" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current through the diode under forward bias = 10.72 µA\n" ] } ], "source": [ "import math\n", "# Given data\n", "Io = 2*10**-7# A\n", "V = 0.1# V\n", "# Current through the diode under forward bias,\n", "I = Io*( (math.exp(40*V))-1 )# A\n", "I = I * 10**6# µA\n", "print \"The current through the diode under forward bias = %.2f µA\"%I\n", "\n", "# Note: Calculated value of I in the book is wrong." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.28 Page No 67" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The dynamic resistance in forward direction = 3.36 ohm\n", "The dynamic resistance in reverse direction = 0.39 Mohm\n" ] } ], "source": [ "import math\n", "# Given data\n", "T = 125.0# degree C\n", "T = T + 273.0# K\n", "V_T = T/11600.0\n", "Io = 30# µA\n", "Io = Io * 10**-6# A\n", "V = 0.2# V\n", "# The dynamic resistance = %.2f forward direction,\n", "r_f = V_T/( Io * (math.exp(V/V_T)) )# ohm\n", "print \"The dynamic resistance in forward direction = %.2f ohm\"%r_f\n", "r_f = V_T/( Io * (math.exp(-V/V_T)) )# ohm\n", "# The dynamic resistance = %.2f reverse direction \n", "r_f = r_f * 10**-6# Mohm\n", "print \"The dynamic resistance in reverse direction = %.2f Mohm\"%r_f" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.29 Page No 68" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The voltage = -59.87 mV\n", "The ratio of diode current with a forward bias to current with a reverse bias = -6.842\n", "The value of I1 = 458.13 µA\n", "The value of I2 = 21.90 mA\n", "The value of I3 = 1.03 A\n" ] } ], "source": [ "import math\n", "# Given data\n", "Eta = 1\n", "V_T = 0.026\n", "# I = Io*( (exp(V/(Eta*V_T))) - 1 ) and I = -Io\n", "# I = -0.9*Io\n", "# -0.9*Io = Io*( (exp(V/(Eta*V_T))) - 1 )\n", "V = Eta*V_T*math.log(0.1)# V\n", "V = V * 10**3# mV\n", "print \"The voltage = %.2f mV\"%V\n", "V = 0.05# V\n", "# The ratio of diode current with a forward bias to current with a reverse bias \n", "If_by_Ir= ( (math.exp(V/V_T))-1 )/( (math.exp(-V/V_T))-1 )\n", "print \"The ratio of diode current with a forward bias to current with a reverse bias = %.3f\"%If_by_Ir\n", "Io = 10# µA\n", "V = 0.1# V\n", "# The value of I1 \n", "I1 = Io*( (math.exp(V/V_T))-1 )# µA\n", "print \"The value of I1 = %.2f µA\"%I1\n", "V = 0.2# V\n", "# The value of I2\n", "I2 = Io*( (math.exp(V/V_T))-1 )# µA \n", "I2 = I2 * 10**-3# mA\n", "print \"The value of I2 = %.2f mA\"%I2\n", "V = 0.3# V\n", "# The value of I3\n", "I3 = Io*( (math.exp(V/V_T))-1 )# µA\n", "I3 = I3 * 10**-6# A\n", "print \"The value of I3 = %.2f A\"%I3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.30 Page No 69" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The factor by which current will get multiplied = 638.025\n" ] } ], "source": [ "import math\n", "# Given data\n", "# Io150 = Io25 * 2**((150-25)/10)\n", "#Io150 = 5800*Io25\n", "T = 150# degree C\n", "T = T + 273# K\n", "V_T = 8.62*10**-5 * T# V\n", "V = 0.4# V\n", "Eta = 2\n", "Vt = 0.026# V \n", "# The factor by which current will get multiplied \n", "I150byI25= 5800*math.exp(V/(Eta*V_T))/math.exp(V/(Eta*Vt))\n", "print \"The factor by which current will get multiplied = %.3f\"%I150byI25" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.31 Page No 69" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The operating point of the diode is : (0.50V,4.50mA)\n" ] } ], "source": [ "# Given data\n", "R = 1# ohm\n", "V = 5# V\n", "V1 = 0.5# V\n", "R1 = 1# k ohm\n", "R1 = R1 * 10**3# ohm\n", "# V-(I_D*R1)-(I_D*R) - V1 = 0\n", "I_D = (V-V1)/(R1+R)# A\n", "I_D = I_D * 10**3# mA\n", "V_D = (I_D*10**-3*R) + V1# V\n", "print \"The operating point of the diode is : (%.2fV,%.2fmA)\"%(V_D,I_D)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.32 Page No 70" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The voltage drop across the forward biased diode, = 0.0180 V\n" ] } ], "source": [ "import math\n", "# Given data\n", "Eta = 1\n", "kT = 26# meV\n", "# (%e**((e*V1)/kT)) = 2 or\n", "#The voltage drop across the forward biased diode\n", "V1 = math.log(2)*kT# mV\n", "V1= V1*10**-3# V\n", "print \"The voltage drop across the forward biased diode, = %.4f V\"%V1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.33 Page No 71" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The space charge capacitance = 70.74 pF\n" ] } ], "source": [ "import math\n", "# Given data\n", "epsilon_Ge = 16/(36*math.pi*10**11)# F/cm\n", "d = 2*10**-4# cm\n", "A = 1# mm**2\n", "A = A * 10**-2# cm**2\n", "epsilon_o = epsilon_Ge# F/cm\n", "# The space charge capacitance \n", "C_T = (epsilon_o*A)/d# F\n", "C_T = C_T * 10**12# pF\n", "print \"The space charge capacitance = %.2f pF\"%C_T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.34 Page No 71" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of C_T = 61.68 pf/cm**2\n" ] } ], "source": [ "import math \n", "# Given data\n", "D = 0.102# cm \n", "A = (math.pi*(D**2))/4# cm**2\n", "sigma_p = 0.286# (ohm-cm)**-1\n", "q = 1.6*10**-19# C\n", "miu_p = 500\n", "# Formula used, sigma_p = q*miu_p*N_A\n", "N_A = sigma_p/(q*miu_p)# atoms/cm**3\n", "V1 = 5# V\n", "V2 = 0.35# V\n", "Vb = V1+V2# V\n", "# The transition capacitance,\n", "C_T = 2.92*10**-4*((N_A/Vb)**(1./2))*A# pF/cm**2\n", "print \"The value of C_T = %.2f pf/cm**2\"%C_T" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.35 Page No 71" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of C_T for reverse bias = 15.00 pF\n" ] } ], "source": [ "# Given data\n", "C_T1 = 15# pF\n", "Vb1 = 8# V\n", "Vb2 = 12# V\n", "# C_T1/C_T2 = (Vb2/Vb1)**(1/2)\n", "C_T2 = C_T1 * ((Vb1/Vb2)**(1/2))# pF\n", "print \"The value of C_T for reverse bias = %.2f pF\"%C_T2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.36 Page No 72" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The voltage = -59.87 mV\n" ] } ], "source": [ "import math\n", "# Given data\n", "V_T = 0.026# V\n", "Eta = 1\n", "I = '-0.9*Io'\n", "# T = Io*((%e**(V/(Eta*V_T)))-1 )\n", "# I = Io*((%e**(V/(Eta*V_T)))-1 )\n", "V = math.log(0.1)*V_T# V \n", "V = V * 10**3# mV\n", "print \"The voltage = %.2f mV\"%V" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.37 Page No 72" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Part (a) : The value of I_D for first circuit = 0.97 mA\n", "Part (b) : The value of I_D for second circuit = 0.10 mA\n" ] } ], "source": [ "# Given data\n", "Vin = 20# V\n", "Vgamma = 0.7# V\n", "R = 20# k ohm\n", "R = R * 10**3# ohm\n", "# Vin-(I_D*Vin) - Vgamma = 0 or\n", "# The value of I_D,\n", "I_D = (Vin-Vgamma)/R# A\n", "I_D = I_D * 10**3# mA\n", "print \"Part (a) : The value of I_D for first circuit = %.2f mA\"%I_D\n", "\n", "# Part (b)\n", "Vin= 10.# V\n", "Vgamma = 0.7# V\n", "R = 100# k ohm\n", "# Drain current,\n", "I_D= Vin/R# mV\n", "print \"Part (b) : The value of I_D for second circuit = %.2f mA\"%I_D" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.38 Page No 73" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of I_D = 3.10 mA\n", "The value of Vo = 6.90 V\n" ] } ], "source": [ "# Given data\n", "R1 = 1# k ohm\n", "R1 = R1 * 10**3# ohm\n", "R2 = 2# k ohm\n", "R2 = R2 * 10**3# ohm\n", "V = 10# V\n", "V1 = 0.7# V \n", "# V * (I_D*R1) - (R2*I_D) - V1 = 0\n", "I_D = (V-V1)/(R1+R2)# A\n", "I_D = I_D * 10**3# mA\n", "print \"The value of I_D = %.2f mA\"%I_D\n", "# The output voltage,\n", "Vo = (I_D*10**-3 * R2) +V1# V\n", "print \"The value of Vo = %.2f V\"%Vo" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.39 Page No 73" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Part (a): The current through resistance = 1.00 A\n", "Part (b) : Current through 10 ohm resistance will be Zero\n", "Part (c): Current will be zero\n", "Part (d): The diode will be ON and current = 1.00 A\n" ] } ], "source": [ "# Given data\n", "V = 10.# V\n", "R = 10# ohm\n", "# Current through resistance,\n", "I = V/R# A\n", "print \"Part (a): The current through resistance = %.2f A\"%I\n", "print \"Part (b) : Current through 10 ohm resistance will be Zero\"\n", "print \"Part (c): Current will be zero\"\n", "print \"Part (d): The diode will be ON and current = %.2f A\"%I" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.40 Page No 74" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The operating point is : (0.50V,4.50mA)\n" ] } ], "source": [ "# Given data\n", "Vth= 0.5# V\n", "R_F= 1*10**3# ohm\n", "V= 5# V\n", "# Applying KVL for loop, V-Vd-R_F*Ii= 0 (i)\n", "# When Ii=0\n", "Vd= V# V\n", "# When Vd= 0\n", "Ii= V/R_F# A\n", "# From eq(i)\n", "Ii= (V-Vth)/R_F# A\n", "Vd= V-R_F*Ii# V\n", "print \"The operating point is : (%.2fV,%.2fmA)\"%(Vd,Ii*1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.43 Page No 76" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The voltage at V1 = 6.00 volts\n", "The voltage at V2 = 5.40 volts\n" ] } ], "source": [ "# Given data\n", "V_CC = 6# V\n", "Vr = 0.6# V\n", "V1= V_CC##in V\n", "V2 = V1-Vr# V\n", "print \"The voltage at V1 = %.2f volts\"%V1\n", "print \"The voltage at V2 = %.2f volts\"%V2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.44 Page No 76" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of I1 = 1.80 mA\n", "The value of I2 = 1.80 mA\n" ] } ], "source": [ "# Given data\n", "V_T = 0.7# V\n", "V = 5# V\n", "R = 2# k ohm\n", "R = R * 10**3# ohm\n", "Vs = 0.7\n", "Vx = Vs+V_T# V\n", "# The value of I1 \n", "I1 = (V-Vx)/R# A\n", "I1 = I1 * 10**3# mA\n", "print \"The value of I1 = %.2f mA\"%I1\n", "# The value of I2 \n", "I2 = I1# mA\n", "print \"The value of I2 = %.2f mA\"%I2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 1.45 Page No 77" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of Vo = 1.00 V\n" ] } ], "source": [ "# Given data\n", "Rf = 300.# ohm\n", "V = 0.5# V\n", "R = 600.# ohm\n", "Vi = 2.# V\n", "# The output voltage \n", "Vo = (Vi-V)*( R/(R+Rf) )# V\n", "print \"The value of Vo = %.2f V\"%Vo" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }