{ "metadata": { "name": "", "signature": "sha256:b09b7fb5366e8af61b1c0396c23ff3a998c9bd372716836d0d1fda9706db6296" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 6 : DC Machines" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.1 Page No : 6.3" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "# Variables\n", "P = 4;\t\t\t\t#no. of poles\n", "c = 2;\t\t\t\t#no. of parallel paths\n", "p = 4./2;\t\t\t\t#no. of pair of poles\n", "S = 51;\t\t\t\t#no. of slots\n", "C = 12;\t\t\t\t#conductors per slot\n", "N = 900;\t\t\t\t#rpm(speed)\n", "fi = 25./1000;\t\t\t\t#Wb\n", "\n", "# Calculations\n", "Z = S*C;\t\t\t\t#total no. of conductors\n", "E = 2*Z/c*N*p/60*fi;\t\t\t\t#V\n", "\n", "# Results\n", "print \"Generated emf(V): %.2f\"%E\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Generated emf(V): 459.00\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.2 Page No : 6.4" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P = 8.;\t\t\t\t#no. of poles\n", "c = 8.;\t\t\t\t#no. of parallel paths\n", "p = 8./2;\t\t\t\t#no. of pair of poles\n", "E = 260.;\t\t\t\t#V(generated emf)\n", "fi = 0.05;\t\t\t\t#Wb\n", "S = 120;\t\t\t\t#no. of slots\n", "N = 350;\t\t\t\t#rpm(speed)\n", "\n", "# Calculations\n", "Z = E/(2./c*N*p/60*fi);\t\t\t\t#V\n", "\n", "# Results\n", "print \"No. of conductors per slot\",int(Z)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "No. of conductors per slot 891\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.3 Page No : 6.6" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "Ra = 0.1;\t\t\t\t#ohm(Armature Resistance)\n", "Vs = 250;\t\t\t\t#V(supply voltage)\n", "\n", "# Calculations and Results\n", "#part(a)\n", "I = 80;\t\t\t\t#A\n", "Vdrop = Ra*I;\t\t\t\t#V\n", "emf = Vs+Vdrop;\t\t\t\t#V(Generated emf)\n", "print \"Part(a) Generated emf(V) : %.2f\"%emf\n", "\n", "#part(b)\n", "I = 60;\t\t\t\t#A(current taken by Motor)\n", "Vdrop = Ra*I;\t\t\t\t#V\n", "emf = Vs-Vdrop;\t\t\t\t#V(Generated emf)\n", "print \"Part(b) Generated emf(V) : %.2f\"%emf\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part(a) Generated emf(V) : 258.00\n", "Part(b) Generated emf(V) : 244.00\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.4 Page No : 6.7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "P = 4;\t\t\t\t#no. of poles\n", "Vs = 440;\t\t\t\t#V\n", "c = 2;\t\t\t\t#no. of parallel paths\n", "p = 4./2;\t\t\t\t#no. of pair of poles\n", "Ia = 50;\t\t\t\t#A\n", "Ra = 0.28;\t\t\t\t#ohm\n", "Z = 888;\t\t\t\t#conductors\n", "fi = 0.023;\t\t\t\t#Wb\n", "\n", "# Calculations\n", "emf = Vs-Ia*Ra;\t\t\t\t#V\n", "N = emf/(2*Z/c*p/60*fi);\t\t\t\t#rpm\n", "\n", "# Results\n", "print \"Speed in rpm\",round(N)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed in rpm 626.0\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.5 Page No : 6.7" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "N = 900;\t\t\t\t#rpm\n", "Vs = 460.;\t\t\t\t#V\n", "Vs_new = 200;\t\t\t\t#V\n", "fi_ratio = 0.7;\t\t\t\t#ratio of new flux to original flux\n", "\n", "# Calculations\n", "kfi = Vs/N;\t\t\t\t#for original flux\n", "Nnew = Vs_new/kfi/fi_ratio;\t\t\t\t#rpm(new speed)\n", "\n", "# Results\n", "print \"Speed in rpm\",round(Nnew)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Speed in rpm 559.0\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.6 Page No : 6.8" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "Ia = 110;\t\t\t\t#A\n", "Vs = 480;\t\t\t\t#V\n", "Ra = 0.2;\t\t\t\t#ohm\n", "P = 6.;\t\t\t\t#no. of poles\n", "c = 6.;\t\t\t\t#no. of parallel paths\n", "p = P/2;\t\t\t\t#no. of pair of poles\n", "Z = 864;\t\t\t\t#no. of conductors\n", "fi = 0.05;\t\t\t\t#Wb\n", "\n", "# Calculations and Results\n", "emf = Vs-Ia*Ra;\t\t\t\t#V\n", "N = emf/(2*Z/c*p/60*fi);\t\t\t\t#rpm\n", "print \"(a) Speed in rpm\",round(N)\n", "\n", "Pm = Ia*emf;\t\t\t\t#W(Mechanical power developed)\n", "M = Pm/(N/60)/(2*math.pi);\t\t\t\t#Nm(Torque)\n", "print \"(b) Gross torque developed(Nm) : %.f\"%M\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Speed in rpm 636.0\n", "(b) Gross torque developed(Nm) : 756\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 6.7 Page No : 6.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "N = 15;\t\t\t\t#rps\n", "M = 2*1000;\t\t\t\t#Nm(Torque required)\n", "Loss = 8*1000;\t\t\t\t#W\n", "\n", "# Calculations\n", "P = 2*math.pi*M*N;\t\t\t\t#W(Power required)\n", "Pa = P-Loss;\t\t\t\t#W(Power generated in armature)\n", "\n", "# Results\n", "print \"Power generated in armature(kW) : %.2f\"%(Pa/1000)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power generated in armature(kW) : 180.50\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }