{

 "metadata": {

  "name": "",

  "signature": "sha256:4f08cfe536912048165948aa8a78d3602da78d460154eb52213ea2da5e5f2029"

 },

 "nbformat": 3,

 "nbformat_minor": 0,

 "worksheets": [

  {

   "cells": [

    {

     "cell_type": "heading",

     "level": 1,

     "metadata": {},

     "source": [

      "Chapter 01:Electromagnetics and Optics"

     ]

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex1.6:pg-25"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "#To find refractive index of of the glass\n",

      "import math\n",

      "\n",

      "# Given data\n",

      "phi=0.7297;                          # Critical angle for glass-air interface\n",

      "n2=1;                                # Refractive index of air\n",

      "n1=n2/math.sin(phi);                      # Refractive index of glass\n",

      "\n",

      "# Displaying the result in command window\n",

      "print \"\\n Refractive index of the glass = \",round(n1,1)\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        "\n",

        " Refractive index of the glass =  1.5\n"

       ]

      }

     ],

     "prompt_number": 16

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex1.7:pg-25"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "#To calculate a)the speed of light b) The wavelenght in medium c) The wavenumber in medium\n",

      "import math\n",

      "\n",

      "\n",

      "#a)The speed of light\n",

      "c=3*10**8;                               #Speed of light in free space (m/s)\n",

      "n=1.45;                                 #Given refractive index of dielectric medium\n",

      "v=(c/n);                               #Speed of light in medium (in m/s)\n",

      "\n",

      "#Displaying the result in command window\n",

      "print\" \\nSpeed of light in medium =\",round(v*10**-8,3),\" X 10^8 m/s',\"\n",

      "\n",

      "#b) The wavelenght in medium \n",

      "f=190*10**12;                           #Given operating frequency of laser\n",

      "lambdam=(v/f);                         #Wavelenght in medium \n",

      "\n",

      "#Displaying the result in command window\n",

      "print\" \\nWavelenght of laser in medium =\",round(lambdam*10**(6),4),\" micrometer\"\n",

      "\n",

      "#c) The wavenumber in medium\n",

      "k=(2*math.pi)/lambdam;                    #Wavenumber in medium\n",

      "\n",

      "#Displaying the result in command window\n",

      "print \"\\nWavenumber in medium =\",round(k*10**-6,2),\" X 10^6 m^-1\"\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " \n",

        "Speed of light in medium = 2.069  X 10^8 m/s',\n",

        " \n",

        "Wavelenght of laser in medium = 1.0889  micrometer\n",

        "\n",

        "Wavenumber in medium = 5.77  X 10^6 m^-1\n"

       ]

      }

     ],

     "prompt_number": 8

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex1.8:pg-26"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "\n",

      "# To calculate a)magnitude of the wave vector of the refracted wave b)x-component and z-component of the wave vector\n",

      "\n",

      "import math\n",

      "#Given data\n",

      "n1=1;                                               # Refractive index of air\n",

      "n2=1.45;                                            # Refractive index of slap\n",

      "theta1=math.pi/3;                                       # Angle of incidence\n",

      "lambdam=1.0889*10**(-6);                             # Wavelength in medium\n",

      "theta2=math.asin(math.sin(theta1)/n2);                        # Angle of refraction\n",

      "\n",

      "# a)To calculate magnitude of the wave vector of the refracted wave\n",

      "k=((2*math.pi)/lambdam);                               # Wavenumber\n",

      "\n",

      "# Displaying the result in command window\n",

      "print\" Magnitude of the wave vector of the refracted wave is same as wave number =\",round(k*10**(-6),2),\" X 10^6 m^-1\"\n",

      "\n",

      "# b)To calculate x-component and z-component of the wave vector\n",

      "kx=k*math.sin(theta2);                                   # x-component of the wave vector\n",

      "kz=k*math.cos(theta2);                                   # z-component of the wave vector\n",

      "\n",

      "# Displaying the result in command window\n",

      "print\"\\n z-component of the wave vector =\",round(kz*10**(-6),2),\" X 10^6 m**-1\"\n",

      "print\"\\n x-component of the wave vector = \",round(kx*10**(-6),2),\" X 10^6 m**-1\"\n",

      "# The answer is varrying due to round-off error \n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " Magnitude of the wave vector of the refracted wave is same as wave number = 5.77  X 10^6 m^-1\n",

        "\n",

        " z-component of the wave vector = 4.63  X 10^6 m**-1\n",

        "\n",

        " x-component of the wave vector =  3.45  X 10^6 m**-1\n"

       ]

      }

     ],

     "prompt_number": 11

    },

    {

     "cell_type": "heading",

     "level": 2,

     "metadata": {},

     "source": [

      "Ex1.9:pg-30"

     ]

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [

      "#To find length of the medium\n",

      "import math\n",

      "\n",

      "\n",

      "bandwidth=100*10**9;                        #Bandwidth of optical signal\n",

      "w=2*math.pi*bandwidth;                      #Bandwidth of optical signal in rad/s\n",

      "T=3.14*10**(-12);                           #Delay between minimum and maximum frequency component\n",

      "beta2=10*(10**(-12))**2/10.0**3;            #Group velocity dispersion parameter in s^2/km\n",

      "L=T/(beta2*w);                              #Length of the medium\n",

      "\n",

      "# Displaying the result in command window\n",

      "print\" Length of the medium =\",round(L),\" m\"\n",

      "\n"

     ],

     "language": "python",

     "metadata": {},

     "outputs": [

      {

       "output_type": "stream",

       "stream": "stdout",

       "text": [

        " Length of the medium = 500.0  m\n"

       ]

      }

     ],

     "prompt_number": 15

    },

    {

     "cell_type": "code",

     "collapsed": false,

     "input": [],

     "language": "python",

     "metadata": {},

     "outputs": []

    }

   ],

   "metadata": {}

  }

 ]

}