{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 26:CHARGE AND MATTER" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Example 26.1 Magnitude of total charges in a copper penny" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Magnitude of the charges in coulombs is 133687.50000000003\n" ] } ], "source": [ "#Example 1.1\n", "\n", "m =3.1 #mass of copper penny in grams\n", "e =4.6*10** -18 #charge in coulombs\n", "N0 =6*10**23 #avogadro’s number atoms / mole\n", "M =64 #molecular weight of copper in gm/ mole\n", "\n", "#Calculation\n", "N =( N0 * m ) / M #No. of copper atoms in penny\n", "q = N * e # magnitude of the charges in coulombs\n", "print (\" Magnitude of the charges in coulomb is \",q )" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Example 26.2 Separation between total positive and negative charges" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Separation between total positive and negative charges in meters is 5813776741.499454\n" ] } ], "source": [ "#Example 2\n", "\n", "import math\n", "\n", "F =4.5 #Force of attraction in nt\n", "q =1.3*10**5 #total charge in coulomb\n", "r = q * math.sqrt ((9*10**9) / F ) ;\n", "print(\" Separation between total positive and negative charges in meters is \",r )" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Example 26.3 Force acting on charge q1" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "X component of resultant force acting on q1 in nt is 2.0999999999999996\n", "Y component of resultant force acting on q1 in nt is -1.5588457268119893\n" ] } ], "source": [ "#Example 3\n", "\n", "import math\n", "\n", "#given three charges q1,q2,q3\n", "q1=-1.0*10**-6 #charge in coul\n", "q2=+3.0*10**-6 #charge in coul\n", "q3=-2.0*10**-6 #charge in coul\n", "r12=15*10**-2 #separation between q1 and q2 in m\n", "r13=10*10**-2 # separation between q1 and q3 in m\n", "angle=math.pi/6 #in degrees\n", "F12=(9.0*10**9)*q1*q2/(r12**2) #in nt\n", "F13=(9.0*10**9)*q1*q3/(r13**2) #in nt\n", "F12x=-F12 #ignoring signs of charges\n", "F13x=F13*math.sin(angle);\n", "F1x=F12x+F13x\n", "F12y=0 #from fig.263\n", "F13y=-F13*math.cos(angle);\n", "F1y=F12y+F13y #in nt\n", "print(\"X component of resultant force acting on q1 in nt is\",F1x)\n", "print(\"Y component of resultant force acting on q1 in nt is\",F1y)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Example 26.4 Electrical and Gravitational force between two particles" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Coulomb force in nt is 8.202207191171238e-08\n", "Gravitational force in nt is 3.689889640441438e-47\n" ] } ], "source": [ "#Example 4\n", "\n", "r=5.3*10**-11 #distance between electron and proton in the hydrogen atom in meter\n", "e=1.6*10**-19 #charge in coul\n", "G=6.7*10**-11 #gravitatinal constant in nt-m2/kg2\n", "m1=9.1*10**-31 #mass of electron in kg\n", "m2=1.7*10**-27 #mass of proton in kg\n", "F1=(9*10**9)*e*e/(r**2) #coulomb's law\n", "F2=G*m1*m2/(r**2) #gravitational force\n", "print(\"Coulomb force in nt is\",F1)\n", "print(\"Gravitational force in nt is\",F2)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Example 26.5 Repulsive force between two protons in a nucleus of iron" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Repulsive coulomb force F 14.4 nt\n" ] } ], "source": [ "#Example 5\n", "\n", "r=4*10**-15 #separation between proton annd nucleus in iron in meters\n", "q=1.6*10**-19 #charge in coul\n", "F=(9*10**9)*(q**2)/(r**2) #coulomb's law\n", "print(\"Repulsive coulomb force F \",F,'nt')" ] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }