{ "metadata": { "name": "", "signature": "sha256:7b72a03e09ce03ad176a3887f05ee855123808690595d82c69513fb81e0bbc2c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Ch-8 : Control of DC Drivers" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.12.4: p-275" ] }, { "cell_type": "code", "collapsed": true, "input": [ "# Motor torque \n", "import numpy as np \n", "#given data :\n", "Vs_rms=230 # in volts\n", "N=1200 # in rpm\n", "Ia=40 # in A\n", "Ra=0.25 #in ohm\n", "Ka_fi1=0.182 # in V/rpm\n", "Ka_fi=(0.182*60)/(2*np.pi) \n", "alfa_a=30 \n", "T=Ka_fi*Ia \n", "print \"(a) Motor torque, T =\",round(T,2),\"N-m \"\n", "Ea=((2*sqrt(2)*Vs_rms)/np.pi)*(np.cos(alfa_a*np.pi/180)) \n", "N=(Ea-(Ra*Ia))/Ka_fi1 \n", "print \"(b) Speed of the motor, N =\",round(N,2),\"rpm\"\n", "Is_rms=Ia \n", "PF=(Ea*Ia)/(Vs_rms*Is_rms) \n", "print \"(c) Power factor, PF =\",round(PF,2),\"lagging\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Motor torque, T = 69.52 N-m \n", "(b) Speed of the motor, N = 930.39 rpm\n", "(c) Power factor, PF = 0.78 lagging\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.13.2: p-278" ] }, { "cell_type": "code", "collapsed": true, "input": [ "# Delay Angel of Armature,No load speed and speed regulation\n", "import numpy as np\n", "#given data :\n", "VL_rms=208 # in volts\n", "Kv=1.2 # in V/A-rad/sec\n", "Vs_rms=round(VL_rms/np.sqrt(3),2) \n", "Vm=np.sqrt(2)*Vs_rms \n", "Rf=240 # in ohm\n", "Ra=0.25 # in ohm\n", "alfa_f=0 # in degree\n", "V=280 # in volts\n", "Twenty_HP=20*746 #in watt\n", "Ia=Twenty_HP/V\n", "Ef=round((3*np.sqrt(3)*Vm*np.cos(alfa_f*np.pi/180))/np.pi,2) \n", "N=1800 \n", "w=(N*2*np.pi)/60 \n", "If=Ef/Rf \n", "Eg=Kv*w*If \n", "Ea=round(Eg+(Ia*Ra),2) \n", "alfa_a=(np.arccos((Ea*np.pi)/(3*np.sqrt(3)*Vm))) \n", "print \"(a) Delay Angel Of Armature, alfa_a = \",round(alfa_a,2),\"degree\"\n", "Ia1=(Ia*10)/100\n", "Eg_noL=Ea-(Ia1*Ra) \n", "w_0=(Eg_noL/(1.2*1.17)) # rad/sec\n", "N_0=(w_0*60)/(2*np.pi) \n", "print \"(b) NO load speed at alfa|_a =\",round(N_0,2),\"rpm\"\n", "SR=((N_0-N)/N)*100 \n", "print \"(c) Speed Regulation, SR =\",round(SR,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Delay Angel Of Armature, alfa_a = 0.14 degree\n", "(b) NO load speed at alfa|_a = 1882.16 rpm\n", "(c) Speed Regulation, SR = 4.56 %\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.14.3 - P : 284" ] }, { "cell_type": "code", "collapsed": true, "input": [ "#alpha, speed and delay angle\n", "from __future__ import division\n", "import numpy as np\n", "#given data :\n", "v1=208 #\n", "vsrms=v1/np.sqrt(3) #\n", "n=1000 #rpm\n", "w=n*(pi/30) #in rad/s\n", "ang=0 #\n", "ef=((3*sqrt(3)*np.sqrt(2)*vsrms*np.cos(ang))/pi) #in volts\n", "rf=140 #in ohms\n", "If=ef/rf #in amperes\n", "t=120 #N-m\n", "kv=1.2 #\n", "ia=(t)/(kv*If) #in amperes\n", "eg=kv*If*w #in volts\n", "ra=0.25 #in ohms\n", "ea=eg+(ia*ra) #\n", "alpha=np.arccos((ea*np.pi)/(3*np.sqrt(3)*np.sqrt(2)*vsrms))\n", "print \"(a) alpha is\",round(alpha,2),\"degree\"\n", "rf=140 #in ohms\n", "If=ea/rf #in amperes\n", "t=120 #N-m\n", "kv=1.2 #\n", "ia=(t)/(kv*If) #in amperes\n", "ra=0.25 #in ohms\n", "eg=ea-(ia*ra) #\n", "w=(eg/(kv*If)) #in rad/s\n", "N=w*(30/pi) #rpm\n", "print \"(b) Speed is\",round(N,2),\"rpm\"\n", "n1=1000 #rpm\n", "w=n1*(np.pi/30) #in rad/s\n", "v1=208 #\n", "vsrms=v1/np.sqrt(3) #\n", "w1=(1800*(np.pi/30)) #\n", "n=1800 #rpm\n", "ang=0 #\n", "T=120 #n-m\n", "alphas=0 #\n", "ang=0 #\n", "ea=((3*np.sqrt(3)*np.sqrt(2)*vsrms*np.arccos(ang))/np.pi) #in volts\n", "rf=140 #in ohms\n", "If=ea/rf #in amperes\n", "t=120 #N-m\n", "kv=1.2 #\n", "ia=(t)/(kv*If) #in amperes\n", "ra=0.25 #in ohms\n", "eg=ea-(ia*ra) #\n", "if1=eg/(kv*w1) #in amperese\n", "ef1=if1*rf #in volts\n", "alphaf=np.arccos((ef1*np.pi)/(3*np.sqrt(3)*120*np.sqrt(2))) \n", "print \"(c) Delay angle is\",round(alphaf,2),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) alpha is 0.34 degree\n", "(b) Speed is 1058.39 rpm\n", "(c) Delay angle is 0.3 degree\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.15.1: p-296" ] }, { "cell_type": "code", "collapsed": true, "input": [ "# Firing angle to keep the motor current and Power fed back \n", "from numpy import pi, sqrt, arccos\n", "#given data :\n", "Vs_rms=260 # in volts\n", "Ia=40 # in A\n", "Eg=192 #in volts\n", "kv=0.182 # in V/rpm\n", "Ra=0.3 # in ohm\n", "Ea=Eg+(Ia*Ra) \n", "alfa_a=arccos((Ea*pi)/(2*Vs_rms*sqrt(2))) \n", "print \"(a) Firing angle to keep motor current, alfa_a =\",round(alfa_a,2),\"degree\"\n", "Ea1=-Eg+(Ia*Ra) \n", "alfa_b=arccos((Ea1*pi)/(2*Vs_rms*sqrt(2))) \n", "print \"(b) Firing angle, alfa_b =\",round(alfa_b,2),\"degree\"\n", "Ia=40 # in A\n", "Eg=192 #in volts\n", "Ra=0.3 # in ohm\n", "Ea=-Eg+(Ia*Ra) \n", "P=abs(Ea)*Ia \n", "print \"(c) Power fed back, P =\",round(P,2),\"Watt\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Firing angle to keep motor current, alfa_a = 0.51 degree\n", "(b) Firing angle, alfa_b = 2.45 degree\n", "(c) Power fed back, P = 7200.0 Watt\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.15.3: p-312" ] }, { "cell_type": "code", "collapsed": true, "input": [ "# torque developed,speed and input power factor\n", "from numpy import pi, sqrt, arccos, cos\n", "#given data :\n", "v=208 #in volts\n", "f=50 #in Hz\n", "ra=0.5 #in ohms\n", "rf=345 #in ohms\n", "kv=0.71 #in V/A-rad/sec\n", "alpha=45 #in degree\n", "ia=55 #in amperes\n", "If=((2*sqrt(2)*v*cos(0))/(pi*rf)) #in amperes\n", "t=kv*If*ia #in N/m\n", "print \"(a) Torque is\",round(t,2),\"N/m\"\n", "eb=((2*sqrt(2)*v*cos(alpha))/pi)-(ia*ra) #in volts\n", "w=eb/(kv*If) #in rad/sec\n", "N=w/(2*pi) #rps\n", "print \"(b) speed is\",round(N*60,2),\"rpm\"\n", "#speed is calculated wrong in the textbook\n", "ea=132.4 #in volts\n", "ef=187.3 #in volts\n", "pi=(ea*ia)+(ef*If) #in watts\n", "Isrms=sqrt((ia)**2+(If)**2) #in amperes\n", "va1=Isrms*v #in VA\n", "Pf=pi/va1 #\n", "print \"(d) power factor is\",round(Pf,2), \"lagging\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Torque is 21.2 N/m\n", "(b) speed is 1756.17 rpm\n", "(d) power factor is 0.65 lagging\n" ] } ], "prompt_number": 38 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.16.1: p-318" ] }, { "cell_type": "code", "collapsed": true, "input": [ "# No load speed ,firing angle ,Power Factor and speed regulation\n", "from numpy import pi, sqrt, arccos, cos\n", "#given data :\n", "Ra=0.075 #in ohm\n", "alfa1=0 # in degree\n", "alfa2=30 # in degree\n", "VL_rms=480 # in volts\n", "Ka_fi=0.3 # in V/rms\n", "Vs_rms=round(VL_rms/sqrt(3),2) \n", "Vm=sqrt(2)*Vs_rms \n", "Ea=round((3*sqrt(3)*Vm*cos(alfa1))/pi) \n", "Ea1=((3*sqrt(3)*Vm*cos(alfa2))/pi) \n", "Ia=(10/100)*160 # in A\n", "N_0=(Ea-Ia*Ra)/Ka_fi \n", "N_30=(Ea1-Ia*Ra)/Ka_fi \n", "print \"part (a)\"\n", "print \"No load speed at alfa=0 degree is\",round(N_0,2),\"rpm\"\n", "print \"No load speed at alfa=30 degree is\",round(N_30,2),\"rpm\"\n", "print \"part (b)\"\n", "Ia=160 # in A\n", "N=1800 # in rpm\n", "Eg=540 # in volts\n", "Ea=(Eg+(Ia*Ra)) \n", "alfa=(arccos((Ea*pi)/(3*sqrt(3)*Vm))) \n", "print \"The firng angel, alfa is\",round(alfa,2),\"degree\"\n", "Is_rms=sqrt(2/3)*Ia \n", "Sva=3*Vs_rms*Is_rms \n", "PF=(Ea*Ia)/(Sva) \n", "print \"(c) Power Factor, PF =\",round(PF,2),\"lagging\"\n", "Ra=0.075 #in ohm\n", "Ia=160 # in A\n", "Ia1=16 # in A\n", "Eg=540 # in volts\n", "Ka_fi=0.3 # in V/rms\n", "N=1800 # in rpm\n", "Ea=(Eg+(Ia*Ra)) \n", "Eg1=Ea-(Ia1*Ra) \n", "N_0=Eg1/Ka_fi \n", "SR=((N_0-N)/N)*100 \n", "print \"(d) Speed Regulation, SR =\",round(SR,2),\"%\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "part (a)\n", "No load speed at alfa=0 degree is 2156.0 rpm\n", "No load speed at alfa=30 degree is 329.3 rpm\n", "part (b)\n", "The firng angel, alfa is 0.55 degree\n", "(c) Power Factor, PF = 0.81 lagging\n", "(d) Speed Regulation, SR = 2.0 %\n" ] } ], "prompt_number": 41 } ], "metadata": {} } ] }