{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2 Switched communication systems" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2, page no 125" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maximum auxillary current is:10.00 mA\n", "\n", "MMF in the auxillary winding is:2.00AT \n", "\n", "MMF in main winding is:40.00 AT \n", "\n", "net MMF required in main winding is:44.00 AT \n", "\n", "operating current needed is:4.40 mA \n", "\n", "working voltage is:2.84 volts \n", "\n" ] } ], "source": [ "from __future__ import division\n", "#given\n", "Io=4*10**-3 #rqueired operating current\n", "N1=10000 #no of turns in the main winding\n", "R1=645 #resistence of the main winding in ohms\n", "N2=200 #no of turns in auxillary winding\n", "B=2 #spacing bias\n", "Iaux=B/N2 #maximum auxillary current\n", "print \"maximum auxillary current is:%0.2f mA\\n\"%(Iaux*1e3)\n", "MMFaux=N2*Iaux #MMF in the auxillary winding\n", "print \"MMF in the auxillary winding is:%0.2fAT \\n\"%(MMFaux)\n", "MMFop=Io*N1 #operating MFF in main winding\n", "print \"MMF in main winding is:%0.2f AT \\n\"%(MMFop)\n", "MMFnet=MMFop+(0.1*MMFop) #net MMF required in main winding\n", "print \"net MMF required in main winding is:%0.2f AT \\n\"%(MMFnet)\n", "Iop=MMFnet/N1 #operating current needed\n", "print \"operating current needed is:%0.2f mA \\n\"%(Iop*1e3)\n", "V=Iop*R1 #working voltage in volts\n", "print \"working voltage is:%0.2f volts \\n\"%(V)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3,page no 125" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Busy hour calling rate is:1.20 \n", "\n", "Rate of traffic flow is 250.00 traffic unit \n" ] } ], "source": [ "#given\n", "C=6000#Tatol no of call in busy hour\n", "SC=5000#no of subscribers\n", "CR=C/SC#busy hour calling rate\n", "print \"Busy hour calling rate is:%0.2f \\n\"%(CR)\n", "T=2.5/60#avarage duration of calls in hours\n", "\n", "A=C*T#rate of traffic flow\n", "print \"Rate of traffic flow is %0.2f traffic unit \"%(A)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4,page no 126" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "maxixmum current is 33.33 mamps \n", "\n", "operate lag is 1.83 msec \n", "\n", "release lag is 2.85 msec \n", "\n" ] } ], "source": [ "from math import log\n", "#given\n", "L=3#relay inductance in henry\n", "R=1500#relay resistance in ohm\n", "Io=20e-3#oparating current in amps\n", "Ir=8e-3#release current in amps\n", "\n", "V=50#supply volatage in volts\n", "Im=V/R#maxixmum current in amps\n", "print \"maxixmum current is %0.2f mamps \\n\"%(Im*1e3)\n", "to=(L/R)*log(1/(1-(Io/Im)))#operate lag in sec\n", "print \"operate lag is %0.2f msec \\n\"%(to*1000)\n", "tr=(L/R)*log(Im/Ir)#release lag in sec\n", "print \"release lag is %0.2f msec \\n\"%(tr*1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4.1,page no 126" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)\n", "periods per character is:150.00 msec\n", "\n", "period per element is:20.00 msec\n", "\n", "speed is:50.00 bauds\n", "\n", "\n", "(b)\n", "periods per character is:100.00 msec\n", "\n", "period per element is:13.33 msec\n", "\n", "speed is 75.00 bauds\n", "\n", "\n", "(c)\n", "periods per character is:100.00 msec\n", "\n", "period per element is:10.00 msec\n", "\n", "speed is 100.00 bauds\n", "\n" ] } ], "source": [ "#given\n", "#a\n", "C_S1=20/3#speed in characters per second\n", "P_C1=1/C_S1#periods per character\n", "print \"(a)\\nperiods per character is:%0.2f msec\\n\"%(P_C1*1e3)\n", "E_C1=7.5#elements per character\n", "P_E1=P_C1/E_C1#period per element\n", "print \"period per element is:%0.2f msec\\n\"%(P_E1*1e3)\n", "Sb1=1/P_E1#speed in bauds\n", "print \"speed is:%0.2f bauds\\n\\n\"%(Sb1)\n", "#b\n", "C_S2=10#speed in characters per second\n", "P_C2=1/C_S2#periods per character\n", "print \"(b)\\nperiods per character is:%0.2f msec\\n\"%(P_C2*1e3)\n", "E_C2=7.5#elements per character\n", "P_E2=P_C2/E_C2#period per element\n", "print \"period per element is:%0.2f msec\\n\"%(P_E2*1e3)\n", "Sb2=1/P_E2#speed in bauds\n", "print \"speed is %0.2f bauds\\n\\n\"%( Sb2)\n", "#c\n", "C_S3=10#speed in characters per second\n", "P_C3=1/C_S3#periods per character\n", "print \"(c)\\nperiods per character is:%0.2f msec\\n\"%(P_C3*1e3)\n", "E_C3=10#elements per character\n", "P_E3=P_C3/E_C3#period per element\n", "print \"period per element is:%0.2f msec\\n\"%(P_E3*1e3)\n", "Sb3=1/P_E3#speed in bauds\n", "print \"speed is %0.2f bauds\\n\"%(Sb3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5,page no 127" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "total inductance is 0.05 H \n", "\n", "maximum current is 10.00 mA \n", "\n", "operating current is 5.00 mA \n", "\n", "operate lag is 0.35 msec \n", "\n" ] } ], "source": [ "#given\n", "N=1000#no of turns\n", "L1=5e-8#inductance per turn\n", "L=N**2*L1#total inductance\n", "print \"total inductance is %0.2f H \\n\"%(L)\n", "R=100#resistance of winding in ohm\n", "MMF=5#operating MMF in amp. turn\n", "V=1#voltage of received signal in volts\n", "Im=V/R#maximum current\n", "print \"maximum current is %0.2f mA \\n\"%(Im*1e3)\n", "Io=MMF/N#operating current\n", "print \"operating current is %0.2f mA \\n\"%(Io*1e3)\n", "to=(L/R)*log(1/(1-(Io/Im)))#operate lag\n", "print \"operate lag is %0.2f msec \\n\"%(to*1e3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6,page no 128" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Busy hour calling rate is:1.60 \n", "\n", "Rate of traffic flow is 693.33 traffic unit \n" ] } ], "source": [ "#given\n", "S=10000#no of subscribers\n", "C=16000#Tatol no of call in busy hour\n", "CR=C/S#busy hour calling rate\n", "print \"Busy hour calling rate is:%0.2f \\n\"%(CR)\n", "T=2.6#avarage duration of calls in min\n", "\n", "A=C*(T/60)#rate of traffic flow\n", "print \"Rate of traffic flow is %0.2f traffic unit \"%(A)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.7,page no 135" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "duration of each element is:10.00 msec\n", "\n", "speed is 100.00 bauds\n", "\n", "total possible combinations are:128.00\n" ] } ], "source": [ "#given\n", "N=7#no of character elements\n", "E_C=10#elements per character (1+7+1+1)\n", "To=100e-3#duration of one character\n", "Te=To/E_C#duration of each element\n", "print \"duration of each element is:%0.2f msec\\n\"%(Te*1e3)\n", "Sb=1/Te#speed in bauds\n", "print \"speed is %0.2f bauds\\n\"%(Sb)\n", "C=2**N#total possible combinations\n", "print \"total possible combinations are:%0.2f\"%(C)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.8,page no 129" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total no of call in busy hour is:1500.00 calls per Hour\n", "\n", "Busy hour calling rate is:1.50 \n", "\n", "grade of service is: 0.02\n" ] } ], "source": [ "#given\n", "S=1000#no of subscribers\n", "T=2.4/60#avarage duration of calls in hours\n", "A=60#rate of traffic flow\n", "C=A/T#Tatol no of call in busy hour\n", "print \"Total no of call in busy hour is:%0.2f calls per Hour\\n\"%(C)\n", "CR=C/S#busy hour calling rate\n", "print \"Busy hour calling rate is:%0.2f \\n\"%(CR)\n", "SCL=30#no of call lost per hour\n", "\n", "B=SCL/(C+SCL)#grade of service\n", "print \"grade of service is: %0.2f\"%(B)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.9,page no 129" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "grade of service is: 2.00e-03\n", "\n", "traffic lost is: 1.80e-03\n" ] } ], "source": [ "from math import factorial\n", "#given\n", "N=5#no of switches\n", "A=0.9#traffic offered \n", "#grade of service B=(A**N/N!)/(1+A+A**2/2!+A**3/3!+...+A**N/N!)\n", "#here\n", "B=(A**N/factorial(N))/(1+A+(A**2/factorial(2))+(A**3/factorial(3))+(A**4/factorial(4))+(A**5/factorial(5)))\n", "print \"grade of service is: %0.2e\\n\"%(B)\n", "Tl=A*B#traffic lost\n", "print \"traffic lost is: %0.2e\"%(Tl)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }