{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4 BJT Fundamentals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−1 in page 208" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)The value of the Base Current is 3.85e-04 A\n", "\n", "(b)The value of the Collector Current is 3.615e-03 A \n", "\n" ] } ], "source": [ "#Calculate Base and Collector Currents\n", "# Given Data\n", "alpha=0.90; # Current Gain in CB mode\n", "Ico=15*10**-6; # Reverse saturation Current in micro−A\n", "Ie=4*10**-3; # Emitter Current in mA\n", "# Calculations\n", "Ic=Ico+(alpha*Ie);\n", "Ib=Ie-Ic;\n", "print \"(a)The value of the Base Current is %0.2e A\\n\" %Ib;\n", "print \"(b)The value of the Collector Current is %0 .3e A \\n\" %Ic" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−2 in page 209" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)The Current gain alpha for BJT is 0.989 \n", "\n", "(b)The value of the base Current is 4.44e-05 A\n", "\n", "(c)The value of the Emitter Current is 4.04e-03 A \n", "\n" ] } ], "source": [ "#Calculate alpha using beta\n", "# Given Data\n", "\n", "beta_bjt=90.; # beta gain for the BJT\n", "Ic=4*10**-3; # Collector Current in mA\n", "# Calculations\n", "alpha=beta_bjt/(1.+beta_bjt);\n", "Ib=Ic/beta_bjt;\n", "Ie=Ic+Ib;\n", "print \"(a)The Current gain alpha for BJT is %0.3f \\n\"%alpha\n", "print \"(b)The value of the base Current is %0.2e A\\n\"%Ib\n", "print \"(c)The value of the Emitter Current is %0.2e A \\n\"%Ie" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−3 in page 20" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)The value of Current gain beta for BJT is 9 \n", "\n", "(b)The value of the Collector Current is 4.65e-03 A \n", "\n" ] } ], "source": [ "#Collector Current in C E mode\n", "# Given Data\n", "alpha=0.90; # Current Gain of BJT\n", "Ico=15*10**-6; # Reverse Saturation Current of BJT in micro−A\n", "Ib=0.5*10**-3; # Base Current in C−E mode in mA\n", "# Calculations\n", "beta_bjt=alpha/(1-alpha);\n", "Ic=(beta_bjt*Ib)+(beta_bjt+1)*Ico;\n", "print \"(a)The value of Current gain beta for BJT is %0.0f \\n\"%beta_bjt\n", "print \"(b)The value of the Collector Current is %0.2e A \\n\"%Ic" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−4 in page 20" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The Current gain beta for the Device is 250 \n", "\n" ] } ], "source": [ "#Calculate beta for the BJT\n", "Ib=20*10**-6; # Base current in micro−A\n", "Ic=5*10**-3; # Collector Current in mA\n", "# Calculations\n", "beta_bjt=Ic/Ib;\n", "print \"The Current gain beta for the Device is %0.0f \\n\"%beta_bjt;\n", "# The Current Gain beta for the Device is 250" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−5 in page 209" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)The value of the Emitter Current is 5.05e-03A \n", "\n", "(b)The value of beta gain of the BJT is 100 \n", "\n", "(c)The value of alpha gain of the BJT is 0.990 \n", "\n" ] } ], "source": [ "#To Compute Alpha Beta and Emitter Current\n", "# Given Data\n", "Ib=50*10**-6; # Base Current in mu−A\n", "Ic=5*10**-3; # Collector Current in mA\n", "# Calculations\n", "Ie=Ic+Ib;\n", "beta_bjt=Ic/Ib;\n", "alpha=Ic/Ie;\n", "print \"(a)The value of the Emitter Current is %0.2eA \\n\"%Ie\n", "print \"(b)The value of beta gain of the BJT is %0.0f \\n\"%beta_bjt\n", "print \"(c)The value of alpha gain of the BJT is %0.3f \\n\"%alpha" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−6 in page 210" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of inverse beta of the BJT is 1 \n", "\n", "The value of inverse alpha of the BJT is 2 \n", "\n" ] } ], "source": [ "#Calculate alpha reverse and beta reverse\n", "# Given Data\n", "Ie=10.*10**-3; # Emitter Current in mA\n", "Ib=5*10**-3; # Base Current in mu−A\n", "# Calculations\n", "Ic=Ie-Ib;\n", "beta_reverse=Ib/Ic;\n", "alpha_reverse=Ie/Ic;\n", "print \"The value of inverse beta of the BJT is %0.0f \\n\"%beta_reverse\n", "print \"The value of inverse alpha of the BJT is %0.0f \\n\"%alpha_reverse" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−7 in page 210" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Circuit 1:\n", "(a)Emitter Current=9.30e-04 A\n", "(b)Base Current=9.21e-06 A\n", "(c)Collector Voltage=0.792 V\n", "\n", "\n", "Circuit 2:\n", "(a)Emitter Current=1.86e-03 A\n", "(b) Collector Current=1.842e-03 A\n", "(c)Collector Voltage=-5.700 V\n", "\n" ] } ], "source": [ "# Calculate Labeled Currents and Voltages\n", "# Given Data\n", "beta_bjt=100.; # beta gain of BJT\n", "Vbe=0.7; # Base−Emitter voltage of BJT in V\n", "#Calculation\n", "Vcc1=10.;\n", "Vee1=-10.;\n", "Ve1=-0.7;\n", "R1=10*10**3;\n", "Ie1=(Vcc1-Vbe)/R1;\n", "Ib1=Ie1/(beta_bjt+1);\n", "Vc1=Vcc1-R1*(Ie1-Ib1);\n", "Vcc2=10.;\n", "Vee2=-15.;\n", "Ve2=-0.7;\n", "R2 =5*10**3;\n", "Ie2=(Vcc2-Vbe)/R2;\n", "Ic2=(beta_bjt/(beta_bjt+1.))*Ie2;\n", "Vc2=Vee2+R2*(Ie2);\n", "print \"Circuit 1:\\n(a)Emitter Current=%0.2e A\\n(b)Base Current=%0.2e A\\n(c)Collector Voltage=%0.3f V\\n\\n\"%(Ie1,Ib1,Vc1);\n", "print \"Circuit 2:\\n(a)Emitter Current=%0.2e A\\n(b) Collector Current=%0.3e A\\n(c)Collector Voltage=%0.3f V\\n\"%(Ie2,Ic2,Vc2);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−8 in page 211" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Circuit 1:\n", "(a)Base Voltage = 0.0 V\n", "(b)Emitter Voltage = -0.7 V\n", "\n", "Circuit 2:\n", "(a)Emitter Voltage = 0.7 V\n", "(b) Collector Voltage = -5.7 V\n", "\n" ] } ], "source": [ "#Calculate labeled Voltages\n", "# Given Data\n", "Vbe=0.7; # Base−Emitter voltage of BJT in V\n", "Vcc2=10; # DC voltage across Collector in V\n", "Vee2=-15; # DC voltage across Emitter in V\n", "Rc2=5*10**3; # Collector Resistance in K−ohms\n", "# Beta Current Gain of BJT is Infinity\n", "# Calculations\n", "Vb1=0;\n", "Ve1=-0.7;\n", "Ve2=0.7;\n", "Vc2=Vee2+Rc2*((Vcc2-Vbe)/Rc2);\n", "print \"Circuit 1:\\n(a)Base Voltage = %0.1f V\\n(b)Emitter Voltage = %0.1f V\\n\"%(Vb1,Ve1);\n", "print \"Circuit 2:\\n(a)Emitter Voltage = %0.1f V\\n(b) Collector Voltage = %0.1f V\\n\"%(Ve2,Vc2);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−9 in page 211" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Circuit Parameters:\n", "(a)Base Voltage = 0.300V\n", "(b)Base Current = 1.500e-05 A\n", "(c)Emitter Current= 8.000e-04 A\n", "(d)Collector Current = 7.850e-04 A\n", "(e) Collector Voltage = -1.075 V\n", "(f) beta gain = 52.333\n", "(g)alpha gain = 0.981\n", "\n" ] } ], "source": [ "#Calculating BJT parameters assuming Vbe\n", "# Given Data\n", "Ve=1.; # Emitter Voltage of BJT in V\n", "Vbe=0.7; # Base−Emitter Voltage of BJT in V\n", "Rb=20*10**3; # Base Resistance of Circuit in K−ohms\n", "Rc=5*10**3; # Collector Resistance of Circuit in K−ohms\n", "Re=5*10**3; # Emitter Resistance of Circuit in K−ohms\n", "Vcc=5.; # DC voltage across Collector in V\n", "Vee=-5; # DC voltage across Emitter in V\n", "# Calculations\n", "Vb=Ve-Vbe;\n", "Ib=Vb/Rb;\n", "Ie=(Vcc -1)/Re;\n", "Ic=Ie-Ib;\n", "Vc=(Rc*Ic)-Vcc;\n", "beta_bjt=Ic/Ib;\n", "alpha=Ic/Ie;\n", "print \"Circuit Parameters:\\n(a)Base Voltage = %0.3fV\\n(b)Base Current = %0.3e A\\n(c)Emitter Current= %0.3e A\\n(d)Collector Current = %0.3e A\\n(e) Collector Voltage = %0.3f V\\n(f) beta gain = %0.3f\\n(g)alpha gain = %0.3f\\n\"%(Vb,Ib,Ie,Ic,Vc, beta_bjt ,alpha);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−10 in page 211" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)Change in Emitter voltage is +0.40 V\n", "\n", "(b)Change in Collector Voltage is 0.00 V\n", "\n" ] } ], "source": [ "# Measurement of Circuit Voltage changes\n", "# Given Data\n", "Vb=-5; # Base Voltage of BJT in V\n", "Rc=1*10**3; # Collector Resistance in K−ohms\n", "Ie=2*10**-3; # Emitter Current of BJT in mA\n", "delB=+0.4; # Change in Base Voltage\n", "# Calculations\n", "delE =+0.4;\n", "delC=0;\n", "print \"(a)Change in Emitter voltage is +%0.2f V\\n\"%delE\n", "print \"(b)Change in Collector Voltage is %0.2f V\\n\"%delC" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4−11 in page 212" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Assume active mode for circuit 1\n", "(a)Ve = 1.30 V\n", "(b)Ic = 0.00e+00 A\n", "(c)Ve = 3.03 V\n", "\n", "Thus the circuit operates in an active mode\n", "\n", "\n", "For circuit 2,assume active mode\n", "\n", "(a)Ve = 1.7 V\n", "(b)Ie = 4.30e-04 A\n", "(c)Vc = 4.30 V\n", "\n", "This circuit operates in a saturated mode\n", "\n", "\n", "For circuit 3,assume active mode\n", "\n", "(a)Ve = -4.3 V\n", "(b)Ie = 6.9000e-05 A\n", "(c)Ic = 0.000e+00 A\n", "(d)Vc = -40.2 V\n", "\n", "The circuit operates in an active mode\n", "\n", "\n", "For circuit 4,assume active mode\n", "\n", "(a)Ie = 1.86e-03 A\n", "(b)Vc = -10.00 V\n", "\n", "The circuit operates in an active mode\n" ] } ], "source": [ "# Determine mode of operation of BJT\n", "# Given Data\n", "Vbe=0.7; # Base−Emitter Voltage in V\n", "beta_bjt=100; # beta gain of BJ\n", "# Calculation\n", "print \"Assume active mode for circuit 1\"\n", "Vb1=2;\n", "Ve_1=Vb1-Vbe;\n", "Ie1 =1*10** -3;\n", "Ic1=Ie1*(beta_bjt/(1+beta_bjt));\n", "Ve1=6-(3*0.99);\n", "print \"(a)Ve = %0.2f V\\n(b)Ic = %0.2e A\\n(c)Ve = %0.2f V\\n\"%(Ve_1,Ic1,Ve1);\n", "print \"Thus the circuit operates in an active mode\\n\\n\"\n", "print \"For circuit 2,assume active mode\\n\"\n", "Vcc=1;\n", "Ve2=Vcc+Vbe;\n", "Ie2=(6-Ve2)/(10*10**3);\n", "Vc=0+(10*0.43);\n", "print \"(a)Ve = %0.1f V\\n(b)Ie = %0.2e A\\n(c)Vc = %0.2f V\\n\"%(Ve2,Ie2,Vc);\n", "print \"This circuit operates in a saturated mode\\n\\n\"\n", "print \"For circuit 3,assume active mode\\n\"\n", "Ve3=-5+Vbe;\n", "Ie3=(9.5-Ve3)/(200*10**3);\n", "Ic=Ie3*(beta_bjt/(1+beta_bjt));\n", "Vc3=-50+(0.492*20);\n", "print \"(a)Ve = %0.1f V\\n(b)Ie = %0.4e A\\n(c)Ic = %0.3e A\\n(d)Vc = %0.1f V\\n\"%(Ve3,Ie3,Ic,Vc3);\n", "print \"The circuit operates in an active mode\\n\\n\"\n", "print \"For circuit 4,assume active mode\\n\"\n", "Ve4 = -20.7;\n", "Ie4=(30+Ve4)/(5*10**3);\n", "Vc4=(-Ie4*(beta_bjt/(1+beta_bjt))*(2*10**3))-10;\n", "print \"(a)Ie = %0.2e A\\n(b)Vc = %0.2f V\\n\"%(Ie4,Vc4)\n", "print \"The circuit operates in an active mode\"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }