{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2 : Energy Bands and Charge Carriers in semiconductor" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.1 Page No. 58" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Eg=0.72 #eV\n", "Ef=0.5*Eg\n", "dE=Eg-Ef #eV\n", "k=8.61*10**-5 #Boltzman constant\n", "T=300 #K\n", "\n", "import math\n", "N=1/(1+math.exp(dE/(k*T)))\n", "\n", "\n", "print\"the fraction of total no. of electron is \",round(N,9)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the fraction of total no. of electron is 8.85e-07\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.4 Page No. 62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "E=300*1.602*10**-19 #eV Energy\n", "m=9.108*10**-31 #kg, mass of electron\n", "h=6.626*10**-34 #Planck constant\n", "\n", "v=math.sqrt(2*E/m)\n", "lam=h*v/E\n", "\n", "print\"The wavwlength is\",round(lam*10**10,3),\"A\"\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The wavwlength is 1.416 A\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.5 Page No. 70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "ni=1.4*10**18\t\t\t#in atoms/m**3\n", "Nd=1.4*10**24\t\t\t#in atoms/m**3\n", "n=Nd\t\t\t\t#in atoms/m**3\n", "\n", "p=ni**2/n\t\t\t#in atoms/m**3\n", "ratio=n/p\t\t\t#unitless\n", "\n", "print\"Ratio of electron to hole concentration : \",round(ratio,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Ratio of electron to hole concentration : 1e+12\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.7 Page no 74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "n=10**24 #Electron density\n", "e=1.6*10**-19 #Electron charge\n", "v=0.015 #m/s drift velocity\n", "A=10**-4 #m**2 area\n", "\n", "I=n*e*v/A\n", "\n", "print\"The magnitude of current is\",round(I/10**8,2),\"A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnitude of current is 0.24 A\n" ] } ], "prompt_number": 35 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.8 Page No. 74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Ef=5.5\t\t\t#in eV\n", "MUe=7.04*10**-3\t\t#in m**2/V-s\n", "n=5.8*10**28\t\t#in m**-3\n", "e=1.6*10**-19\t\t#constant\n", "m=9.1*10**-31\t\t#in Kg\n", "\n", "import math\n", "tau=MUe*m/e\t\t#in sec\n", "rho=1/(n*e*MUe)\t\t#in ohm-m\n", "vF=math.sqrt(2*Ef*1.6*10**-19/m)\n", "\n", "print\"Relaxation time in sec : \",tau,\"s\"\n", "print\"Resistivity of conductor in ohm-m : \",round(rho,11),\"ohm m\"\n", "print\"velocity of electron with fermi energy is \",round(vF,0),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Relaxation time in sec : 4.004e-14 s\n", "Resistivity of conductor in ohm-m : 1.531e-08 ohm m\n", "velocity of electron with fermi energy is 1390707.0 m/s\n" ] } ], "prompt_number": 32 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.9 Page No. 92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "e=1.6*10**-19\t\t\t#in coulamb\n", "ND=10**17\t\t\t#in cm**-3\n", "Bz=0.1\t\t\t\t#in Wb/m**2\n", "w=4\t\t\t\t#in mm\n", "d=4\t\t\t\t#in mm\n", "Ex=5\t\t\t\t#in V/cm\n", "MUe=3800\t\t\t#in cm**2/V-s\n", "\n", "v=MUe*Ex\t\t\t#in cm/s\n", "v=v*10**-2\t\t\t#in m/s\n", "VH=Bz*v*d\t\t\t#in mV\n", "\n", "print\"Magnitude of hall voltage is\",VH,\"mV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of hall voltage is 76.0 mV\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.11 Page No.92" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "e=1.6*10**-19\t\t\t#in coulamb\n", "ND=10**21\t\t\t#in m**-3\n", "Bz=0.2\t\t\t\t#in T\n", "d=4\t\t\t\t#in mm\n", "d=d*10**-3\t\t\t#in meter\n", "J=600\t\t\t\t#in A/m**2\n", "n=ND\t\t\t\t#in m**-3\n", "\n", "VH=Bz*J*d/(n*e)\t\t\t#in V\n", "\n", "print\"Magnitude of hall voltage is \",VH*10**3,\"mV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Magnitude of hall voltage is 3.0 mV\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.12 Page No." ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "e=1.6*10**-19\t\t\t#in coulamb\n", "rho=0.00912\t\t\t#in ohm-m\n", "B=0.48\t\t\t\t#in Wb/m**2\n", "RH=3.55*10**-4\t\t\t#in m**3-coulamb**-1\n", "SIGMA=1/rho\t\t\t#in (ohm=m)**-1\n", "\n", "import math\n", "THETAh=math.atan(SIGMA*B*RH)\t#in Degree\n", "\n", "print\"Hall angle is\",round(THETAh*180/3.14,4),\"degree\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hall angle is 1.0709 degree\n" ] } ], "prompt_number": 169 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }