{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapater 2 - Ohm's Law " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3,Page number: 19" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The voltage across resistor 1 is: 12 V.\n", "The voltage across resistor 2 is: 12 V.\n", "The voltage across resistor 3 is: 16 V.\n", "The voltage across resistor 4 is: 8 V.\n" ] } ], "source": [ "from __future__ import division\n", "#Variable Declaration:\n", "Req=(8.0*12)/(8+12) #Equivalent Resistance of the circuit(in Ohms)\n", "I=5 #Current in the circuit(in Amperes) \n", "\n", "\n", "#Calculations:\n", "V=I*Req\n", "V1=(4.0*V)/(4+4)\n", "V2=(4.0*V)/(4+4)\n", "V3=(8.0*V)/(8+4)\n", "V4=(4.0*V)/(8+4)\n", "\n", "\n", "#Result:\n", "print \"The voltage across resistor 1 is: %d V.\" % (V1)\n", "print \"The voltage across resistor 2 is: %d V.\" % (V2)\n", "print \"The voltage across resistor 3 is: %d V.\" % (V3)\n", "print \"The voltage across resistor 4 is: %d V.\" % (V4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4,Page number:20" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current i1= 2.00 A.\n", "The current i2= 1.20 A.\n", "The current i3= 0.80 A.\n", "The voltage v1= 4.00 V.\n", "The voltage v2= 4.80 V.\n", "The voltage v3= 4.80 V.\n", "\n" ] } ], "source": [ "from __future__ import division\n", "#Variable Declaration:\n", "I=2.0 #Current in Circuit(in Amperes)\n", "R1=2.0 #Resistance of resistor 1(in Ohms) \n", "R2=4.0 #Resistance of resistor 2(in Ohms)\n", "R3=6.0 #Resistance of resistor 3(in Ohms)\n", "\n", "\n", "#Calculations:\n", "Rp=1/((1/R2)+(1/R3))\n", "Req=R1+Rp\n", "Vs=I*Req\n", "v1=Vs*(R1/(R1+Rp))\n", "v2=Vs*(Rp/(R1+Rp))\n", "v3=v2\n", "i1=I\n", "i2=v2/R2\n", "i3=v3/R3\n", "\n", "\n", "#Result:\n", "print \"The current i1= %.2f A.\\nThe current i2= %.2f A.\\nThe current i3= %.2f A.\" %(i1,i2,i3)\n", "print \"The voltage v1= %.2f V.\\nThe voltage v2= %.2f V.\\nThe voltage v3= %.2f V.\\n\" %(v1,v2,v3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5,Page number: 23" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)The effective resistance between points A and B for the combination of resistances is R_AB = 20.00 Ohms.\n", "(b)The effective resistance between points A and B for the combination of resistances is R_AB = 0.4545*R Ohms.\n", "(c)The effective resistance between points A and B for the combination of resistances is R_AB = 15.00 Ohms.\n" ] } ], "source": [ "from sympy import symbols\n", "from __future__ import division\n", "#Calculations:\n", "Rp=1.0/((1.0/20)+(1.0/10)+(1.0/20))\n", "R_AB_1=15+Rp\n", "R = symbols('R')\n", "R1=1.0/((1.0/2.0)+1.0)+ 1.0\n", "R2=R1\n", "R_AB_2= 1.0/((1/R1)+(1/R2)+(1))\n", "R_AB_b=round(R_AB_2,4)*R\n", "R3=1.0/((1.0/3)+(1.0/6)) + 18\n", "R_AB_3= 1.0/((1.0/20)+(1/R3)) + 5\n", "\n", "\n", "#Result:\n", "print \"(a)The effective resistance between points A and B for the combination of resistances is R_AB = %.2f Ohms.\" %(R_AB_1)\n", "print \"(b)The effective resistance between points A and B for the combination of resistances is R_AB = %s Ohms.\" %(R_AB_b)\n", "print \"(c)The effective resistance between points A and B for the combination of resistances is R_AB = %.2f Ohms.\" %(R_AB_3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6,Page number: 24" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current I1= 5.00 A.\n", "The current I2= 3.00 A.\n", "The current I3= 2.00 A.\n" ] } ], "source": [ "from __future__ import division\n", "#Variable Declaration:\n", "V=100 #Voltage of the DC source(in Volts) \n", "\n", "\n", "#Calculations:\n", "Reff= 2+ (1.0/((1.0/12)+(1.0/20)+(1.0/30)))+2\n", "I=V/Reff\n", "\n", "#Applying Ohm's Law, we have 12*I1=20*I2=30*I3;\n", " \n", "#I2=0.6*I1; I3=0.4*I1 \"\"\"\n", "\n", "I1=I/(0.6+0.4+1)\n", "I2=0.6*I1\n", "I3=0.4*I1\n", "\n", "\n", "#Result:\n", "\n", "print \"The current I1= %.2f A.\\nThe current I2= %.2f A.\\nThe current I3= %.2f A.\" %(I1,I2,I3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.7,Page number: 25" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The supply current( I ) is 3 A.\n" ] } ], "source": [ "from math import sqrt\n", "from __future__ import division\n", "#Variable Declaration:\n", "P=20.0 #Power dissipated by resistor(in Watts)\n", "RL=5.0 #Resistance of the load resistor(in Ohms)\n", "R=10.0 #Resistance of resistor(in Ohms)\n", "\n", "\n", "#Calculations:\n", "I1=sqrt(P/RL)\n", "I=(I1*(R+RL))/R\n", "\n", "\n", "#Result:\n", "\n", "print \"The supply current( I ) is %d A.\"%(I)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.8,Page number:25" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The voltage across bulb A is 80.00 V. \n", "The voltage across bulb B is 40.00 V. \n", "The voltage across bulb C is 40.00 V.\n", "The total power dissipated in the three bulbs is 40.00 W.\n" ] } ], "source": [ "from __future__ import division\n", "#Variable Declaration:\n", "V=120.0 #Voltage of the power line(in Volts)\n", "P_bulb=60.0 #Power rating of the bulb(in Watts)\n", "V_bulb=120.0 #Voltage rating of the bulb(in Volts)\n", "\n", "\n", "#Calculations:\n", "R=(V_bulb*V_bulb)/P_bulb\n", "R_A=R\n", "R_B=R\n", "R_C=R\n", "R_BC=1.0/((1.0/R)+(1.0/R))\n", "V_B=V*(R_BC/(R_BC+R_A)) \n", "V_C=V*(R_BC/(R_BC+R_A))\n", "V_A=V-V_B\n", "P_A=(V_A*V_A)/R_A \n", "P_B=(V_B*V_B)/R_B\n", "P_C=(V_C*V_C)/R_C\n", "P=P_A+P_B+P_C\n", "\n", "\n", "#Result:\n", "print \"The voltage across bulb A is %.2f V. \\nThe voltage across bulb B is %.2f V. \\nThe voltage across bulb C is %.2f V.\" %(V_A,V_B,V_C)\n", "print \"The total power dissipated in the three bulbs is %.2f W.\" %(P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.9,Page number: 26" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(a)Minimum value of Req is obtained when R=0(i.e.,a short circuit,because the parallel combination of R2 and R is reduced to 0).\n", " Maximum value of Req is obtained when R is an open ciruit.\n", " Hence, R1 = 30.00 Ohms and R2 = 45.00 Ohms. \n", " \n", "(b)The resistance R to give Req=(30+75)/2 ohm is R = 45.00 Ohms.\n" ] } ], "source": [ "from __future__ import division\n", "#Variable Declaration:\n", "R1=30.0 #Resistance of the resistor(in Ohms)\n", "\n", "\n", "#Calculations:\n", "R2=75-R1\n", "Req=(30+75)/2.0\n", "Rp=Req-R1\n", "R=1/((1/Rp)-(1/R2))\n", "\n", "#Result:\n", "print \"(a)Minimum value of Req is obtained when R=0(i.e.,a short circuit,because the parallel combination of R2 and R is reduced to 0).\" \n", "print \" Maximum value of Req is obtained when R is an open ciruit.\\n Hence, R1 = %.2f Ohms and R2 = %.2f Ohms. \\n \" %(R1,R2)\n", "print \"(b)The resistance R to give Req=(30+75)/2 ohm is R = %.2f Ohms.\" %(R)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }