{ "metadata": { "name": "", "signature": "sha256:abf9f7aa50395283288e62f0f85bd91bae92b4155380f5c281c2602a3861ceb7" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter - 5 Wave Motion and speed" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1, page : 115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import pi\n", "#frequency\n", "r=3 #m\n", "w=10 #s**-1\n", "vs=r*w #m/s\n", "A=6 #m\n", "fd=5/pi #s**-1\n", "vmax=A*2*pi*fd #m/s\n", "v=330 #m/s\n", "n=340 #Hz\n", "nmax=((v+vmax)/(v-vs))*n #Hz\n", "nmin=((v-vmax)/(v+vs))*n #Hz\n", "print \"Maximum frequency is \",nmax,\" Hz\"\n", "print \"Minimum frequency is \",nmin,\" Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum frequency is 442.0 Hz\n", "Minimum frequency is 255.0 Hz\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2, page : 118" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "# frequency\n", "#given data :\n", "N=400 #hZ\n", "V=340 #M/S\n", "VS=60 #M/S\n", "N2=((V/(V-VS))*N) #Hz\n", "print \"Frequency when engine is approaching to the listner is \",round(N2,2),\" Hz\"\n", "N3=((V/(V+VS))*N) #Hz\n", "print \"Frequency when engine is moving away from the listner is \",round(N3,2),\" Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency when engine is approaching to the listner is 485.71 Hz\n", "Frequency when engine is moving away from the listner is 340.0 Hz\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3, page : 120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#frequency\n", "v=1200 #km/h\n", "w=40 #km/h\n", "vs=40 #km/h\n", "n=580 #Hz\n", "nd=((v+vs)/((v+vs)-vs))*n #Hz\n", "print \"Frequency of the whistle as heared by an observer on the hill is \",round(nd,2),\" Hz\"\n", "x=29/30 #km\n", "x*=1000 #m\n", "print \"Distance is \",round(x,2),\" m\"\n", "ndd=((v-w)+vs)/((v-w))*nd #Hz\n", "print \"Frequency heared by driver is \",round(nd,2),\" Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Frequency of the whistle as heared by an observer on the hill is 599.33 Hz\n", "Distance is 966.67 m\n", "Frequency heared by driver is 599.33 Hz\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5, page :125" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#frequency\n", "v=340 #m/s\n", "n=600 #Hz\n", "vs=36 #km h**-1\n", "vs1=vs*(1000/3600) #m/s\n", "apf=((v)/(v-vs1))*n #Hz\n", "vs2=54 #km h**-1\n", "vs3=vs2*(1000/3600) #m/s\n", "apf1=((v)/(v+vs3))*n #Hz\n", "print \"Two apparent frequencies are \",round(apf,2),\" Hz and \",round(apf1,2),\" Hz\"\n", "df=apf-apf1 #Hz\n", "print \"Difference in frequencies is \",round(df,2),\" Hz\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Two apparent frequencies are 618.18 Hz and 574.65 Hz\n", "Difference in frequencies is 43.53 Hz\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9, page : 135" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from math import sqrt, pi\n", "#foce constant,displacement , acceleration and energy\n", "x1=.10 # in m\n", "F1=4 # in N\n", "K=F1/x1 \n", "x2=0.12 # in m\n", "print \"(a) The force constant, K = \",K,\" N/m \"\n", "F=-K*x2 \n", "print \"(b) The force, F = \",F, \" N\"\n", "m=1.6 # in kg\n", "T=2*pi*sqrt(m/K) \n", "print \"(c) Period of pscillation, T = \",round(T,2), \" s\"\n", "A=x2 \n", "print \"(d) Amplitude of motion,A = \",A, \" m\"\n", "alfa=A*K/m \n", "print \"(e) Maximum acceleration,alfa = \",alfa,\" m/s**2\"\n", "x=A/2 # in m\n", "w=sqrt(K/m) \n", "v=w*sqrt(A**2-x**2) \n", "a=w**2*x # in m/s**2\n", "KE=(1/2)*m*v**2 # in J\n", "PE=(1/2)*K*x**2 # in J\n", "TE=KE+PE \n", "print \"\"\"(f) velocity is %0.2f m/s\n", "acceleration %0.2f m/s**2\n", "Kinetic energy is %0.2f J\n", "Potential energy is %0.2f J\"\"\" %(v,a,KE,PE)\n", "print \"(g) Total energy of the oscillating system %0.2f J\" %TE" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The force constant, K = 40.0 N/m \n", "(b) The force, F = -4.8 N\n", "(c) Period of pscillation, T = 1.26 s\n", "(d) Amplitude of motion,A = 0.12 m\n", "(e) Maximum acceleration,alfa = 3.0 m/s**2\n", "(f) velocity is 0.52 m/s\n", "acceleration 1.50 m/s**2\n", "Kinetic energy is 0.22 J\n", "Potential energy is 0.07 J\n", "(g) Total energy of the oscillating system 0.29 J\n" ] } ], "prompt_number": 22 } ], "metadata": {} } ] }