{ "metadata": { "name": "", "signature": "sha256:5a4681bcd32ee53961d617cc97d1b729b583a17da43dad40dee1f6a5e0b10f08" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2 - Junctions & Interfaces" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.6.1 Page 2-21" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import log\n", "#Given : \n", "Ge=4.4*10**22 #atoms/cm**3\n", "NA=Ge/10**8 #per cm**3\n", "NA=NA*10**6 #per m**3\n", "ND=NA*10**3 #per m**3\n", "ni=2.5*10**13 #per cm**3\n", "ni=ni*10**6 #per m**3\n", "VT=26 #mV\n", "Vj=VT*log(NA*ND/ni**2) #mV\n", "print \"Junction potential = %0.1f mV\"%Vj" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Junction potential = 328.7 mV\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.6.2 Page 2- 22" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#Given : \n", "ni=2.5*10**15 #per cm**3\n", "Ge=4.4*10**22 #atoms/cm**3\n", "NA=Ge/10**8 #per cm**3\n", "NA=NA*10**6 #per m**3\n", "ND=NA*10**3 #per m**3\n", "ni=ni*10**6 #per m**3\n", "T=27+273 #K\n", "VT=T/11600 #V\n", "Vo=VT*log(NA*ND/ni**2) #V\n", "print \"Contact potential = %0.4f V \" %Vo" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Contact potential = 0.0888 V \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.6.3 Page 2-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "mu_n=1500*10**-4 #m**2/V-s\n", "mu_p=475*10**-4 #m**2/V-s\n", "ni=1.45*10**10*10**6 #per m**3\n", "q=1.6*10**-19 #Coulomb\n", "rho_p=10 #ohm-cm\n", "rho_p=rho_p*10**-2 #ohm-m\n", "rho_n=3.5 #ohm-cm\n", "rho_n=rho_n*10**-2 #ohm-m\n", "sigma_p=1/rho_p #(ohm-m)**-1\n", "NA=sigma_p/q/mu_p #m**3\n", "sigma_n=1/rho_n #(ohm-m)**-1\n", "ND=sigma_p/q/mu_n #m**3\n", "VT=26*10**-3 #V\n", "Vj=VT*log(NA*ND/ni**2) #V\n", "print \"Height of potential barrier = %0.3f V \"%Vj\n", "#Anser in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Height of potential barrier = 0.564 V \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.6.4 Page 2-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "rho_p=2 #ohm-cm\n", "rho_p=rho_p*10**-2 #ohm-m\n", "rho_n=1 #ohm-cm\n", "rho_n=rho_n*10**-2 #ohm-m\n", "mu_n=1500*10**-4 #m**2/V-s\n", "mu_p=2100*10**-4 #m**2/V-s\n", "ni=2.5*10**13 #per m**3\n", "q=1.6*10**-19 #Coulomb\n", "sigma_p=1/rho_p #(ohm-m)**-1\n", "NA=sigma_p/q/mu_p #m**3\n", "sigma_n=1/rho_n #(ohm-m)**-1\n", "ND=sigma_p/q/mu_n #m**3\n", "T=27+273 #K\n", "VT=T/11600 #V\n", "Vj=VT*log(NA*ND/ni**2) #V\n", "print \"Height of potential barrier = %0.4f V\"%Vj\n", "#Anser in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Height of potential barrier = 0.9347 V\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.7.1 Page 2-27" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Vgamma=0.6 #Volt\n", "rf=12 #ohm\n", "V=5 #Volts\n", "R=1 #kohm\n", "IF=(V-Vgamma)/(R*1000+rf) #A\n", "print \"Diode current = %0.1f mA\"%(IF*1000)\n", "VF=Vgamma+IF*rf #volts\n", "print \"Diode voltage = %0.2f Volts\"%VF" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diode current = 4.3 mA\n", "Diode voltage = 0.65 Volts\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.7.2 Page 2-35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from sympy import symbols, sin, N\n", "#Given : \n", "Vgamma=0.6 #Volt\n", "Rf=10 #ohm\n", "Eta=2 \n", "Vm=0.2 #Volts\n", "Vdc=10 #Volts\n", "RL=1 #kohm\n", "IDQ=(Vdc-Vgamma)/(RL*1000+Rf) #A\n", "VT=25*10**-3 #Volts\n", "rd=Eta*VT/IDQ #ohm\n", "omega,t = symbols('omega t')\n", "Vs = Vm*sin(omega*t)\n", "Vo_ac =(RL*1000)/(RL*1000+rd)*Vs\n", "print \"Alternating component of voltage across RL, Vo(ac) =\",N(Vo_ac,4)\n", "Vo_DC=IDQ*RL*1000 #Volts\n", "Vo_DC_total=Vo_DC+(Vo_ac) #Volts\n", "print \"\\nTotal load voltage =\",N(Vo_DC_total,4)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Alternating component of voltage across RL, Vo(ac) = 0.1989*sin(omega*t)\n", "\n", "Total load voltage = 0.1989*sin(omega*t) + 9.307\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.7.3 Page 2-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import exp\n", "#Given : \n", "Eta=2 #for Si diode\n", "T=300 #K\n", "VT=T/11600 #V\n", "IbyIo=90/100 \n", "#I=Io*(exp(V/Eta/VT)-1)\n", "V=log(IbyIo+1)*Eta*VT #V\n", "print \"Saturation value of voltage = %0.2f mV\"%(V*1000)\n", "VF=0.5 #Volts\n", "VR=-0.5 #Volts\n", "IFbyIR=(exp(VF/Eta/VT)-1)/(exp(VR/Eta/VT)-1) #ratio\n", "print \"Ratio of forward to reverse current : %0.1f\" %IFbyIR\n", "#Answer in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Saturation value of voltage = 33.20 mV\n", "Ratio of forward to reverse current : -15782.7\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.7.4 Page 2-37" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Eta=2 #for Si diode\n", "T=300 #K\n", "VT=T/11600 #V\n", "IbyIo=90/100 \n", "#I=Io*(exp(V/Eta/VT)-1)\n", "V=log(IbyIo+1)*Eta*VT #V\n", "print \"Saturation value of voltage = %0.2f mV\"%(V*1000)\n", "VF=0.2 #Volts\n", "VR=-0.2 #Volts\n", "IFbyIR=(exp(VF/Eta/VT)-1)/(exp(VR/Eta/VT)-1) #ratio\n", "print \"Ratio of forward to reverse current : %0.2f\" %IFbyIR\n", "#Answer in the book is wrong." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Saturation value of voltage = 33.20 mV\n", "Ratio of forward to reverse current : -47.78\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.1 Page 2-61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "IF=10 #mA\n", "VF=0.75 #volts\n", "T=27+273 #K\n", "Eta=2 #for Si diode\n", "VT=T/11600 #V\n", "Io=IF/(exp(VF/Eta/VT)-1) #mA\n", "print \"Reverse saturation current = %0.3f nA\" %(Io*10**6)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reverse saturation current = 5.043 nA\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.2 Page 2-61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "#Given : \n", "IF=10 #mA\n", "VF=0.3 #Volts\n", "T=27+273 #K\n", "Eta=1 #for Ge diode\n", "VT=T/11600 #V\n", "Io=IF/(exp(VF/Eta/VT)-1) #mA\n", "print \"Reverse saturation current = %0.2f nA \"%(Io*10**6) \n", "# Answer wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reverse saturation current = 91.66 nA \n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.3 Page 2-61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Io=1*10**-9 #A\n", "T=27+273 #K\n", "VT=T/11600 #V\n", "VF=0.3 #Volts\n", "Eta=1 #for Ge diode\n", "IF=Io*(exp(VF/Eta/VT)-1) #mA\n", "print \"Forwad current = %0.4f mA \"%(IF*10**3) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Forwad current = 0.1091 mA \n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.4 Page 2-62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "T=27+273 #K\n", "V1=0.4 #V\n", "V2=0.42 #V\n", "I1=10 #mA\n", "I2=20 #mA\n", "VT=T/11600 #V\n", "Eta=1/log(I1/I2)*(V1-V2)/VT\n", "print \"Value of Eta : %0.2f\" %Eta\n", "Io=I1/(exp(V1/Eta/VT)-1)*10**-3 #A\n", "print \"Current, Io = %0.2f nA \"%(Io*10**9) \n", "#Ans in the book is not accurate." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of Eta : 1.12\n", "Current, Io = 9.54 nA \n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.5 Page 2-62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Io1=10**-12 #A\n", "Io2=10**-10 #A\n", "I=2 #mA\n", "Eta=1 #constant\n", "T=27+273 #K\n", "VT=26/1000 #V\n", "#I=I1+I2\n", "V=(log(I*10**-3/(Io1+Io2))+1)*Eta*VT #V\n", "print \"Voltage across the diodes = %.4f V \"%V \n", "#Ans in the book is not accurate." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage across the diodes = 0.4628 V \n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.6 Page 2-64" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Io1=10*10**-9 #A\n", "Io2=10*10**-9 #A\n", "Eta=1.1 #constant\n", "T=25+273 #K\n", "V=0.2 #V(assumed)\n", "VT=T/11600 #V\n", "I1=Io1*(exp(V/Eta/VT)-1) #A\n", "I2=Io2*(exp(V/Eta/VT)-1) #A\n", "I=I1+I2 #A\n", "print \"Source current = %0.2f micro Ampere \"%(I*10**6) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Source current = 23.68 micro Ampere \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.7 Page 2-65" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Io=10**-13 #A\n", "T=27+273 #K\n", "Eta=1 #constant\n", "V=0.6 #V\n", "VT=26/1000 #V\n", "I3=Io*(exp(V/Eta/VT)-1) #A\n", "R=1*1000 #ohm\n", "Ir=V/R #A\n", "Itotal=I3+Ir #A\n", "VD1=log(Itotal/Io)*Eta*VT #V\n", "VD2=VD1 #V\n", "Vin=VD1+VD2+V #V\n", "print \"Voltage Vin = %0.3f V \"%Vin " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage Vin = 1.823 V \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.8 Page 2-66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Vs=10 #V\n", "print \"Case(i) : Vb=9.8V\" \n", "Vb=9.8 #V\n", "#D1 forward & D2 reverse biased: Breakdown D2\n", "VD2=Vb #V\n", "VD1=Vs-Vb #V\n", "print \"VD1 = %0.3f V \"%VD1 \n", "print \"VD2 = %0.2f V \"%VD2\n", "print \"Case(ii) : Vb=10.2V\" \n", "Vb=10.2 #V\n", "#D1 forward & D2 reverse biased: none will be breakdown\n", "VD2=Vb #V\n", "#I=I0 so exp(V1/Eta/VT)-1=1\n", "Eta=1 #constant\n", "VT=26/1000 #V\n", "VD1=log(1+1)*Eta*VT #V\n", "VD2=Vs-VD1 #V\n", "print \"VD1 = %0.3f V \"%VD1 \n", "print \"VD2 = %0.3f V \"%VD2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Case(i) : Vb=9.8V\n", "VD1 = 0.200 V \n", "VD2 = 9.80 V \n", "Case(ii) : Vb=10.2V\n", "VD1 = 0.018 V \n", "VD2 = 9.982 V \n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.9.9 Page 2-67" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Vs=5 #Volt\n", "Eta=1 #constant\n", "VT=26/1000 #V\n", "#I=I0 so exp(V1/Eta/VT)-1=1\n", "V1=log(1+1)*Eta*VT #Volt\n", "V2=Vs-V1 #Volt\n", "print \"Voltage across diode D1 = %0.3f V \"%V1\n", "print \"Voltage across diode D2 = %0.3f V \"%V2 " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Voltage across diode D1 = 0.018 V \n", "Voltage across diode D2 = 4.982 V \n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.10.2 Page 2-70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "rho_n=10 #ohm-cm\n", "rho_p=3.5 #ohm-cm\n", "ni=1.5*10**10 #per cm**3\n", "Vj=0.56 #volt\n", "q=1.6*10**-19 #Coulomb\n", "mu_n=1500 #cm**2/V-s\n", "mu_p=500 #cm**2/V-s\n", "sigma_p=1/rho_p #(ohm-cm)**-1\n", "NA=sigma_p/q/mu_p #per cm**3\n", "sigma_n=1/rho_n #(ohm-cm)**-1\n", "ND=sigma_n/q/mu_n #per cm**3\n", "VT=Vj/log(NA*ND/ni**2) #V\n", "T=11600*VT #K\n", "print \"Temperature of junction = %0.2f degree K \" %T\n", "t=T-273 #degree C\n", "print \"Temperature of junction = %0.2f degree C : \" %t" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Temperature of junction = 287.28 degree K \n", "Temperature of junction = 14.28 degree C : \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.11.1 Page 2-75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Io=10 #nA\n", "T1=27+273 #K\n", "T2=87+273 #K\n", "VT=T1/11600 #V\n", "Eta=2 #for Si\n", "m=1.5 #for Si\n", "VGO=-1.21 #volt\n", "K=Io*10**-9/T1**m/exp(VGO/Eta/VT) #constant\n", "VT=T2/11600 #V\n", "Io2=K*T2**m*exp(VGO/Eta/VT) #A\n", "print \"Reverse saturation current at 87 degree C = %0.2f nA \"%(Io2*10**9) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reverse saturation current at 87 degree C = 648.69 nA \n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.11.2 Page 2-76" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "V=0.45 #volt\n", "Eta=2 #for Si\n", "T1=27+273 #K\n", "T2=125+273 #K\n", "VT1=T1/11600 #V\n", "VT2=T2/11600 #V\n", "I1BYIo1=exp(V/Eta/VT1) \n", "I2BYIo2=exp(V/Eta/VT2) \n", "m=1.5 #for Si\n", "VGO=1.21 #volt\n", "Io1BYIo2=(T1/T2)**m*exp(-VGO/Eta/VT1+VGO/Eta/VT2) #constant\n", "I2BYI1=I2BYIo2/I1BYIo1/Io1BYIo2 \n", "print \"Factor by which current increases : %0.2f\"%I2BYI1\n", "#Answer is wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Factor by which current increases : 56.94\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.11.3 Page 2-78" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Io1=2 #nA\n", "T1=10+273 #K\n", "V=0.4 #volt\n", "VT1=T1/11600 #V\n", "m=1.5 #for Si\n", "Eta=2 #for Si\n", "VGO=-1.21 #volt\n", "K=Io1*10**-9/T1**m/exp(VGO/Eta/VT1) #constant\n", "I1=Io1*10**-9*(exp(V/Eta/VT1)-1) #nA\n", "T2=70+273 #K\n", "VT2=T2/11600 #V\n", "Io2=K*T2**m*(exp(VGO/Eta/VT2)) #A\n", "I2=Io2*(exp(V/Eta/VT2)-1) #nA\n", "change=(I2-I1)/I1*100 #%\n", "print \"%% change in diode current : %0.1f\" %change\n", "#Answer is wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "% change in diode current : 2332.4\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.11.4 Page 2-79" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "T=300 #K\n", "m_Si=1.5 #for Si\n", "m_Ge=1.5 #for Ge\n", "EGO_Si=1.21 #Volt\n", "EGO_Ge=0.785 #Volt\n", "Eta_Si=2 \n", "Eta_Ge=1 \n", "VT=26/1000 #V\n", "print \"Part(i) : \" \n", "d_logIoBYdt_Ge=m_Ge/T+EGO_Ge/(Eta_Ge*T*VT) #per degree C\n", "print \"d(log(Io))/dt for Ge = %0.2f per degree C \"%d_logIoBYdt_Ge \n", "d_logIoBYdt_Si=m_Si/T+EGO_Si/(Eta_Si*T*VT) #per degree C\n", "print \"d(log(Io))/dt for Si = %0.2f per degree C\"%d_logIoBYdt_Si\n", "print \"\\nPart(ii) : \" \n", "V=0.2 #Volt\n", "dVBYdt_Ge=V/T-Eta_Ge*VT*d_logIoBYdt_Ge \n", "print \"dV/dt for Si = %0.1f mV per degree C\"%(dVBYdt_Ge*1000)\n", "V=0.6 #Volt\n", "dVBYdt_Si=V/T-Eta_Si*VT*d_logIoBYdt_Si\n", "print \"dV/dt for Si = %0.1f mV per degree C\"%(dVBYdt_Si*1000)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Part(i) : \n", "d(log(Io))/dt for Ge = 0.11 per degree C \n", "d(log(Io))/dt for Si = 0.08 per degree C\n", "\n", "Part(ii) : \n", "dV/dt for Si = -2.1 mV per degree C\n", "dV/dt for Si = -2.3 mV per degree C\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.12.1 Page 2-85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import sqrt\n", "#Given : \n", "NA=4*10**20 #per m**3\n", "Vj=0.2 #Volt\n", "V1=-1 #Volts\n", "V2=-5 #Volts\n", "epsilon_r=16 #for Ge\n", "epsilon_o=8.85*10**-12 #permitivity\n", "q=1.6*10**-19 #Coulomb\n", "W1=sqrt(2*epsilon_r*epsilon_o*(Vj-V1)/q/NA) #m\n", "print \"Width of depletion region = %0.2f micro meter \"%(W1*10**6) \n", "W2=sqrt(2*epsilon_r*epsilon_o*(Vj-V2)/q/NA) #m\n", "print \"New value of Width of depletion region = %0.2f micro meter \"%(W2*10**6) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Width of depletion region = 2.30 micro meter \n", "New value of Width of depletion region = 4.80 micro meter \n" ] } ], "prompt_number": 23 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.12.2 Page 2-86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "NA=4*10**20 #per m**3\n", "Vj=0.2 #Volt\n", "V1=-1 #Volts\n", "V2=-5 #Volts\n", "A=0.8*10**-6 #m**2\n", "epsilon_r=16 #for Ge\n", "epsilon_o=8.85*10**-12 #permitivity\n", "q=1.6*10**-19 #Coulomb\n", "W1=sqrt(2*epsilon_r*epsilon_o*(Vj-V1)/q/NA) #m\n", "CT1=epsilon_r*epsilon_o*A/W1 #\n", "print \"Transition capacitance = %0.2f pF\"%(CT1*10**12)\n", "W2=sqrt(2*epsilon_r*epsilon_o*(Vj-V2)/q/NA) #m\n", "CT2=epsilon_r*epsilon_o*A/W2 #\n", "print \"New value of Transition capacitance = %0.1f pF\"%(CT2*10**12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transition capacitance = 49.16 pF\n", "New value of Transition capacitance = 23.6 pF\n" ] } ], "prompt_number": 24 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.12.3 Page 2-87" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "NA=3*10**20 #per m**3\n", "Vj=0.2 #Volt\n", "V=-10 #Volts\n", "A=1*10**-6 #m**2\n", "epsilon_r=16 #for Ge\n", "epsilon_o=8.854*10**-12 #permitivity\n", "q=1.6*10**-19 #Coulomb\n", "W=sqrt(2*epsilon_r*epsilon_o*(Vj-V)/q/NA) #m\n", "print \"Width of depletion region = %0.2f micro meter\"%(W*10**6)\n", "CT=epsilon_r*epsilon_o*A/W #\n", "print \"Transition capacitance = %0.2f pF\"%(CT*10**12)\n", "#Answer is wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Width of depletion region = 7.76 micro meter\n", "Transition capacitance = 18.26 pF\n" ] } ], "prompt_number": 25 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.12.4 Page 2-88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "W=2*10**-4*10**-2 #m\n", "A=1*10**-6 #m**2\n", "epsilon_r=16 #for Ge\n", "epsilon_o=8.854*10**-12 #permitivity\n", "q=1.6*10**-19 #Coulomb\n", "CT=epsilon_r*epsilon_o*A/W #\n", "print \"Barrier capacitance = %0.1f pF\"%(CT*10**12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Barrier capacitance = 70.8 pF\n" ] } ], "prompt_number": 26 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.12.5 Page 2-88" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from math import pi\n", "#Given : \n", "Vj=0.5 #Volt\n", "V=-4.5 #Volt\n", "rho_p=5*10**-2 #ohm-m\n", "epsilon_r=12 #for Si\n", "epsilon_o=8.854*10**-12 #permitivity\n", "q=1.6*10**-19 #Coulomb\n", "CT=100*10**-12 #F\n", "mu_p=500*10**-4 #m**2/V-s\n", "sigma_p=1/rho_p #(ohm-m)**-1\n", "NA=sigma_p/q/mu_p #per m**3\n", "W=sqrt(2*epsilon_r*epsilon_o*(Vj-V)/q/NA) #m\n", "A=CT*W/(epsilon_r*epsilon_o) #\n", "r=sqrt(A/pi) #m\n", "D=2*r #m\n", "print \"Diameter = %0.2f micro meter \"%(D*10**6) \n", "#Answer is wrong in the textbook. Sqrt is not taken while calculatng W value and also other mistakes." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter = 1397.53 micro meter \n" ] } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Ex 2.12.6 Page 2-90" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given : \n", "Eta=2 #for Si\n", "T=300 #K\n", "VT=26/1000 #V\n", "IbyIo=0.9 \n", "#part (i)\n", "V=log(IbyIo+1)*Eta*VT #Volt\n", "print \"Value of reverse voltage = %0.2f mV \" %(V*1000)\n", "#part (ii)\n", "VF=0.2 #Volt\n", "VR=-0.2 #Volt\n", "IFbyIR=(exp(VF/Eta/VT)-1)/(exp(VR/Eta/VT)-1) \n", "print \"Ratio of forward bias current to reverse saturation current : %0.2f\" %IFbyIR\n", "#Answer is wrong in the textbook." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of reverse voltage = 33.38 mV \n", "Ratio of forward bias current to reverse saturation current : -46.81\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex 2.12.7 Page 2-91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "#Given : \n", "Vs=100 #V\n", "Rf1=20 #ohm\n", "Vgamma1=0.2 #Volts\n", "Rf2=15 #ohm\n", "Vgamma2=0.6 #Volts\n", "Vb_Ge=0.2 #Volts\n", "Vb_Si=0.6 #Volts\n", "R1=10*10**3 #ohm\n", "R2=1*10**3 #ohm\n", "#Case(i)\n", "Imax=Vs/R1 #A\n", "#D1 ON & D2 off\n", "V=Vb_Ge+Rf1*Imax #Volt\n", "#D2 off as V