{ "metadata": { "name": "", "signature": "sha256:9f01cac55dab0916c25f5aa305301e717abd0c0dfe79622c411a98125bbfc8e6" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter - 5 : High Frequency And High Power Devices" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.1 : Page No - 194" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "from numpy import pi, sqrt\n", "#Given data\n", "C1= 5 # in pF\n", "C1= C1*10**-12 # in F\n", "C2= 50 # in pF\n", "C2= C2*10**-12 # in F\n", "L= 10 # in mH\n", "L= L*10**-3 # in H\n", "TuningRange= 1/(2*pi*sqrt(L*C1*C2/(C1+C2))) # in Hz\n", "print \" The tuning range for the circuit = %0.3f kHz\" %(TuningRange*10**-3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The tuning range for the circuit = 746.503 kHz\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.2 : Page No - 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "C_T1= 15 # in pF\n", "Vb1=8 # in V\n", "Vb2= 12 # in V\n", "# As C_T proportional to 1/sqrt(Vb), and \n", "# C_T1/C_T2= sqrt(Vb2/Vb1), so\n", "C_T2= C_T1*sqrt(Vb1/Vb2) # in pF\n", "print \" The value of C_T2 = %0.2f pF\" %C_T2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The value of C_T2 = 12.25 pF\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.3 : Page No - 195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "epsilon_Ge= 16/(36*pi*10**-11) # in f/C\n", "A=10**-12 \n", "d=2*10**-4 # in cm\n", "# C_T= epsilon_0*A/d= epsilon_Ge*A/d\n", "C_T= epsilon_Ge*A/d #in pF\n", "print \" The space charge capacitance = %0.2f pF\" %C_T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The space charge capacitance = 70.74 pF\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.4 : Page No - 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "D= 0.102 # in cm\n", "sigma_P= 0.286 # in \u03a9cm\n", "q= 1.6*10**-19 # in C\n", "miuP= 500 \n", "Vb= 5+0.35 #in V\n", "A= pi*D**2/4 # in cm**2\n", "N_A= sigma_P/(q*miuP) # at/c\n", "C_T= 2.92*10**-4*(N_A/Vb)**(1/2)*A # \n", "print \" The value of transition = %0.2f pf/cm**2\" %C_T" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The value of transition = 61.68 pf/cm**2\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.5 : Page No - 196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "epsilon= 12/(36*pi*10**11) # in F/cm (value of epsilon for silicon)\n", "q= 1.6*10**-19 # in C\n", "# C_T= epsilon*A/d , where d= 2*epsilon*Vi/(q*NA)**(/2)\n", "# Hence C_T/A= epsilon/d= sqrt(q*epsilon/2)*sqrt(NA/Vi)\n", "# Let \n", "value = sqrt(q*epsilon/2) \n", "print \"C_T= %0.1e sqrt(NA/Vi) pF/cm**2\" %(value*10**12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "C_T= 2.9e-04 sqrt(NA/Vi) pF/cm**2\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.6 : Page No - 197" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "V1= 5 # in V\n", "IncreaseInVolt= 1.5 # in V\n", "C_T1= 20 # in pF\n", "# Formula C_T= lamda/sqrt(V)\n", "lamda= C_T1*sqrt(V1) \n", "# When\n", "V2= V1+IncreaseInVolt # in V\n", "C_T2= lamda/sqrt(V2) \n", "print \" The decrease in capacitance = %0.2f pF\" %(C_T1-C_T2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The decrease in capacitance = 2.46 pF\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.7 : Page No - 198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "Vf= 0.7 # in V\n", "If= 10 # in mA\n", "If= If*10**-3 # in A\n", "toh= 70 # in ns\n", "Cd= toh*If/Vf # in nf\n", "print \" Diffusion capacitance for a si diode = %0.f nf\" %Cd" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Diffusion capacitance for a si diode = 1 nf\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example - 5.8 : Page No - 198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Given data\n", "N_A= 4*10**20 # per m**3\n", "Vi= 0.2 # in V\n", "q= 1.6*10**-19 \n", "V= -1 # in V\n", "A= 0.8*10**-6 #/ in m**2\n", "epsilon_r= 16 \n", "epsilon_o= 8.854*10**-12 # in F\n", "epsilon= epsilon_o*epsilon_r \n", "d= (2*epsilon*(Vi-V)/(q*N_A))**(1/2) \n", "C_T= epsilon*A/d # in F\n", "print \" The transition capacitance = %0.2f pF\" %(C_T*10**12)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " The transition capacitance = 49.17 pF\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }