{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 02 : Capacitance Of Transmission Lines" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.1, Page No 75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "D = 20.0 #in ft\n", "f = 60.0 #in Hz\n", "\n", "#From Table A.1 and A.3\n", "d = 0.642 \t\t\t#in inches\n", "X_a = 0.1074e6 \t\t#in ohm-mi\n", "X_d = 0.0889e6 \t\t#in ohm-mi\n", "\n", "#finding radius\n", "r = d/(2*12) \t\t#divided by 12 convert in to ft\n", "\n", "#Calculations\n", "print('Calculations using conductor spacing and radius')\n", "X_c = 1.779 * math.log(D/r)/f\n", "B_c = 1 / X_c\n", "print(\" Capactive reatance = %.4fe6 ohm mi to neutral \" %X_c)\n", "print(\" Capactive susceptance = %.4fe-6 mho/mi to neutral \" %B_c)\n", "\n", "#calculations using capacitive reactance at 1-ft spacing and spacing factor\n", "print('Calculations using capacitive reactance at 1-ft spacing and spacing factor')\n", "X_c1 = X_a + X_d\n", "print(\" Capactive reatance = %.4fe6 ohm mi per conductor \" %(X_c1/10**6))\n", "X_c11 = 2 * X_c1\n", "B_c1 = 1 / X_c11\n", "\n", "#Results\n", "print(\" Line-to-line capactive reatance = %.4fe6 ohm mi \" %(X_c11/10**6))\n", "print(\" Line-to-line capactive susceptance = %.4fe-6 mho mi \" %(B_c1*10**6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Calculations using conductor spacing and radius\n", " Capactive reatance = 0.1962e6 ohm mi to neutral \n", " Capactive susceptance = 5.0970e-6 mho/mi to neutral \n", "Calculations using capacitive reactance at 1-ft spacing and spacing factor\n", " Capactive reatance = 0.1963e6 ohm mi per conductor \n", " Line-to-line capactive reatance = 0.3926e6 ohm mi \n", " Line-to-line capactive susceptance = 2.5471e-6 mho mi \n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.2, Page No 80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "D_12 = 20.0\t\t\t#in ft\n", "D_23 = D_12\n", "D_31 = 38.0\t\t\t#in ft\n", "f = 60.0\t\t\t#in Hz\n", "V = 220e3\t\t\t#in volts\n", "l = 175\t\t\t\t#in mi\n", "k = 8.85e-12\t\t#permittivity in F/m\n", "#From tables A.1 and A.3\n", "d = 1.108#in inches\n", "X_a1 = 0.0912e6#in ohm mi\n", "X_d1 = 0.0952e6#in ohm mi\n", "\n", "#Calculations\n", "r = d / ( 2 * 12)#division by 12 to convert in to ft\n", "D_eq = (D_12*D_23*D_31)**(1.0/3)\n", "C_n = (2*math.pi*k)/math.log(D_eq/r)\n", "X_c = 1.0/(2*math.pi*f*C_n*1609)\t\t#division by 1609 to convert to ohm mi\n", "\n", "print(\" Capacitance = %.4fe-12 F/m \" %(C_n*1e12))\n", "print(\" Capacitive reactance = %.4fe6 ohm mi \" %(X_c/1e6))\n", "\n", "#Calculations From tables\n", "X_c1 = X_a1 + X_d1\n", "print('Using capacitive reactance at 1-ft spacing and spacing factor')\n", "print(\" Capacitive reactance = %.4fe6 ohm mi \" %(X_c1/1e6))\n", "X_c_l = X_c1/l\t\t\t#Capacitive reactance for 175mi\n", "I_chg = 2*math.pi*f*V*C_n*1609/math.sqrt(3.0)\n", "I_chg_l = I_chg * l\n", "Q =math.sqrt(3)*V*I_chg_l\n", "\n", "\n", "#Results\n", "print('For a lenght of 175mi')\n", "print(\" Capacitive reactance = %.4f ohm to neutral \" %X_c_l)\n", "print(\" Charging current per mile = %.3f A/mi \" %I_chg)\n", "print('For a lenght of 175mi')\n", "print(\" Charging current = %.0f A \" %I_chg_l)\n", "print(\" Total charging megavolt-amperes = %.1f Mvar \" %(Q/1e6))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Capacitance = 8.8472e-12 F/m \n", " Capacitive reactance = 0.1863e6 ohm mi \n", "Using capacitive reactance at 1-ft spacing and spacing factor\n", " Capacitive reactance = 0.1864e6 ohm mi \n", "For a lenght of 175mi\n", " Capacitive reactance = 1065.1429 ohm to neutral \n", " Charging current per mile = 0.682 A/mi \n", "For a lenght of 175mi\n", " Charging current = 119 A \n", " Total charging megavolt-amperes = 45.5 Mvar \n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.3, Page No 85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "d = 0.45 #in m\n", "k = 8.85e-12 #in F/m\n", "D_ab = 8 #in m\n", "D_bc = D_ab\n", "D_ca = 16 #in m\n", "f = 60 #in Hz\n", "\n", "#From tables\n", "D = 1.382 #in inches\n", "\n", "#Calculations\n", "r = D*0.3048/(2.0*12) #divison by 12 to convert in to ft\n", " #multiplication by 0.3048 to convert ft to m\n", "D_b_sC = math.sqrt( r * d)\n", "D_eq = (D_ab * D_bc * D_ca)**(1/3)\n", "C_m = 2* math.pi*k/math.log(D_eq / D_b_sC)\n", "X_c = 1e-3/(2*math.pi*f*C_m) #1e-3 #to convert m to km\n", "\n", "#Results\n", "print(\" Capacitance = %.3fe-12 F/m \" %(C_m * 1e12))\n", "print(\" Capacitive reactance = %.4fe6 ohm km per phase to neutral\" %(X_c/1e6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Capacitance = 22.972e-12 F/m \n", " Capacitive reactance = 0.1155e6 ohm km per phase to neutral\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4.4 Page No 85" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#initialisation of variables\n", "f = 60.0\t\t#in Hz\n", "k = 8.85e-12\t#in F/m\n", "D_eq = 16.1\t\t#in ft\n", "D_a_a1 = 26.9\n", "D_b_b1 = 21.0\n", "D_c_c1 = D_a_a1 #in ft\n", "\n", "#From Table A.1\n", "d = 0.680#in inches\n", "\n", "#calculations\n", "r = d /(2*12)\n", "D_p_sC = (math.sqrt(D_a_a1 * r) * math.sqrt(D_b_b1 * r) * math.sqrt(D_c_c1 * r))**(1.0/3)\n", "C_n = 2 * math.pi * k / math.log(D_eq / D_p_sC)\n", "B_c = 2 * math.pi * f * C_n * 1609.0\t#1609 to convert from m to mi\n", "\n", "#Results\n", "print(\"printprint Capacitance = %.3fe-12 F/m printprint\" %(C_n*1e12))\n", "print(\"printprint Capacitive susceptance = %.2fe-6 mho per mi per phase to neutral\" %(B_c*1e6))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "printprint Capacitance = 18.812e-12 F/m printprint\n", "printprint Capacitive susceptance = 11.41e-6 mho per mi per phase to neutral\n" ] } ], "prompt_number": 17 } ], "metadata": {} } ] }