{ "metadata": { "name": "", "signature": "sha256:e126fa636efa72af4b20cd3702da45f085d125811e3d4b6de05ba5fde96d2c77" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 2:Light propagation in optical ber" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1 , Page no:30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "ncore=1.46; #refractive index of core\n", "nclad=1; #refractive index of cladding\n", "c=3e5; #velocity of light in Km/s\n", "L=1; #length of path in Km\n", "\n", "#CALCULATIONS\n", "NA=math.sqrt(ncore**2-nclad**2); #Numerical aperture\n", "delt_tau_by_L=(NA**2)/(2*c*ncore); #multipath pulse broadening in s/Km\n", "delt_tau=delt_tau_by_L*L; #bandwidth distance product Hz\n", "BL=(1/delt_tau)*L; #bandwidth distance product Hz\n", "#case-2\n", "ncore1=1.465; #refractive index of core\n", "nclad1=1.45; #refractive index of cladding\n", "NA1=math.sqrt(ncore1**2-nclad1**2); #Numerical aperture\n", "delt_tau_by_L1=(NA1**2)/(2*c*ncore1); #multipath pulse broadening in s/m\n", "BL1=(1/delt_tau_by_L1)*L; #bandwidth distance product Hz\n", "\n", "#RESULTS\n", "print\"Numerical aperture=\",round(NA,5); #The answers vary due to round off error\n", "print\"\\nMultipath pulse broadening=\",round(delt_tau_by_L*1e9,5),\"ns/Km\"; #The answer provided in the textbook is wrong//multiplication by 1e9 to convert s/Km to ns/Km \n", "print\"\\nBandwidth distance product=\",round(BL*1e-6,5),\"GHz \"; #The answer provided in the textbook is wrong//multiplication by 1e-6 to convert Hz to MHz\n", "print\"\\n\\nNumerical aperture=\",round(NA1,5);\n", "print\"\\nMultipath pulse broadening=\",round(delt_tau_by_L1*1e9,5),\"ns/Km\"; #The answer provided in the textbook is wrong//multiplication by 1e9 to convert s/Km to ns/Km \n", "print\"\\nBandwidth distance product=\",round(BL1*1e-9,5),\"GHz \"; #The answer provided in the textbook is wrong//multiplication by 1e-6 to convert Hz to GHz" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Numerical aperture= 1.06377\n", "\n", "Multipath pulse broadening= 1291.78082 ns/Km\n", "\n", "Bandwidth distance product= 0.77413 GHz \n", "\n", "\n", "Numerical aperture= 0.20911\n", "\n", "Multipath pulse broadening= 49.74403 ns/Km\n", "\n", "Bandwidth distance product= 0.0201 GHz \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2 , Page no:30" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "lamda1=0.7; #wavelength in um\n", "lamda2=1.3; #wavelength in um\n", "lamda3=2; #wavelength in um\n", "\n", "#CALCULATIONS\n", "f_lambda1=(303.33*(lamda1**-1)-233.33); #equation for lambda1\n", "f_lambda2=(303.33*(lamda2**-1)-233.33); #equation for lambda2\n", "f_lambda3=(303.33*(lamda3**-1)-233.33); #equation for lambda3\n", "\n", "#RESULTS\n", "print\"Material dispersion at Lambda 0.7um=\",round(f_lambda1,5);\n", "print\"\\nMaterial dispersion at Lambda 1.3um=\",round(f_lambda2,5); #The answers vary due to round off error\n", "print\"\\nMaterial dispersion at Lambda 2um=\",round(f_lambda3,5); #The answers vary due to round off error\n", "print\"\\nIts is a standard silica fiber\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Material dispersion at Lambda 0.7um= 199.99857\n", "\n", "Material dispersion at Lambda 1.3um= 0.00077\n", "\n", "Material dispersion at Lambda 2um= -81.665\n", "\n", "Its is a standard silica fiber\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.3 , Page no:32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "ncore=1.505; #refractive index of core\n", "nclad=1.502; #refractive index of cladding\n", "V=2.4; #v no. for single mode \n", "lambda1=1300e-9; #operating wavelength in m\n", "\n", "#CALCULATIONS\n", "NA=math.sqrt(ncore**2-nclad**2); #numerical aperture\n", "a=V*(lambda1)/(2*3.14*NA); #dimension of fiber core in m\n", "\n", "#RESULTS\n", "print\"The numarical aperture =\",round(NA,5);\n", "print\"\\n Dimension of fiber core =\",round(a*1e6,5),\"um\"; #multiplication by 1e6 to convert unit from m to um" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The numarical aperture = 0.09498\n", "\n", " Dimension of fiber core = 5.23079 um\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.4 , Page no:33" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "V=2; #v no. for single mode \n", "a=4; #radius of fiber in um\n", "\n", "#CALCULATIONS\n", "w=a*(0.65+1.619*V**(-3/2)+2.87*V**-6); #effective mode radius in um\n", "\n", "#RESULTS\n", "print\"Effective mode radius =\",round(w,5),\"um\";" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Effective mode radius = 5.06899 um\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.6 , Page no:34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "m=0; #for dominant mode\n", "v=0; #for dominant mode\n", "n1=1.5; #refractive index of core\n", "delta=0.01; #core clad index difference\n", "a=5; #fiber radius in um\n", "lambda1=1.3; #wavelength of operation in um\n", "\n", "#CALCULATIONS\n", "k0=(2*3.14/lambda1); #constant in /m\n", "beta=math.sqrt((k0**2)*(n1**2)-(2*k0*n1*math.sqrt(2*delta)/a)); #propagation constant in rad/um\n", "\n", "#RESULTS\n", "print\"Propagation constant=\",round(beta,5),\"rad/um\"; #The answers vary due to round off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Propagation constant= 7.21781 rad/um\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.8 , Page no:34" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "M=1000; #modes supported\n", "lambda1=1.3; #operating wavelength in um\n", "n1=1.5; #refractive index of core\n", "n2=1.48; #refractive index of cladding\n", "\n", "#CALCULATIONS\n", "V=math.sqrt(2*M); #normalised frequency V no.\n", "NA=math.sqrt(n1**2-n2**2); #numerical apperture\n", "R=lambda1*V/(2*3.14*NA); #radius of fiber in um\n", "\n", "#RESULTS\n", "print\"Core Radius=\",round(R,5),\"um\"; #The answer provided in the textbook is wrong" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Core Radius= 37.92063 um\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.9 , Page no:35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "lambda1=1.3; #wavelength of operation in um\n", "n1=1.5; #refractive index of core\n", "n2=1.48; #refractive index of cladding\n", "k0=2*3.14/lambda1; #constant in /m\n", "\n", "#CALCULATIONS\n", "#case-1\n", "b=0.5; #normalized propagation constant\n", "k0=2*3.14/lambda1; #constant\n", "beta=k0*math.sqrt(n2**2+b*(n1**2-n2**2)); #propagation constant\n", "\n", "#case-2\n", "#given \n", "lambda1=1.3; #wavelength of operation in um\n", "n1=1.5; #refractive index of core\n", "n2=1.48; #refractive index of cladding\n", "k0=2*3.14/lambda1; #constant in /m\n", "b=0.5; #normalized propagation constant\n", "k0=2*3.14/lambda1; #constant\n", "b1=(((n1+n2)/2)**2-n2**2)/(n1**2-n2**2); #normalized propagation constant\n", "\n", "#case-3\n", "#given \n", "lambda1=1.3; #wavelength of operation in um\n", "n1=1.5; #refractive index of core\n", "n21=1.0; #refractive index of cladding\n", "k0=2*3.14/lambda1; #constant in /m\n", "b=0.5; #normalized propagation constant\n", "k0=2*3.14/lambda1; #constant\n", "beta1=k0*math.sqrt(n21**2+b*(n1**2-n21**2)); #propagation constant\n", "\n", "#RESULTS\n", "print\"Propagation constant=\",round(beta,5),\"rad/um\"; #The answers vary due to round off error\n", "print\"\\nPropagation constant=\",round(b1,5); #The answers vary due to round off error\n", "print\"\\nPropagation constant=\",round(beta1,5),\"rad/um\"; #The answers vary due to round off error" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Propagation constant= 7.19801 rad/um\n", "\n", "Propagation constant= 0.49832\n", "\n", "Propagation constant= 6.15805 rad/um\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.10 , Page no:35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#initialisation of variables\n", "#case-1\n", "n1=1.49; #refractive index of core\n", "n2=1.46; #refractive index of cladding\n", "c=3*10**5; #speed of light in Km/s\n", "t1=n1/c; #time delay for one traveling along axis in s/Km\n", "t2=(n1**2/n2)/c; #time delay for one traveling along path that is totally reflecting at the first interface in s/km\n", "\n", "#case-2\n", "n11=1.47; #refractive index of core\n", "n21=1.46; #refractive index of cladding\n", "c1=3*10**5; #speed of light in Km/s\n", "t11=n11/c1; #time delay for one traveling along axis in\n", "t22=(n11**2/n21)/c1; #time delay for one traveling along path that is totally reflecting at the first interface\n", "\n", "\n", "print\"time delay for traveling along axis =\",round(t1*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n", "print\"\\ntime delay for traveling along path that is totally reflecting at the first interface =\",round(t2*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n", "print\"\\ntime delay for traveling along axis =\",round(t11*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n", "print\"\\ntime delay for traveling along path that is totally reflecting at the first interface =\",round(t22*1e6,5),\"us/Km\"; #multiplication by 1e6 to convert the unit from s/Km to us/Km\n", "#The answer provided in the textbook is wrong it has got wrong unit" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "time delay for traveling along axis = 4.96667 us/Km\n", "\n", "time delay for traveling along path that is totally reflecting at the first interface = 5.06872 us/Km\n", "\n", "time delay for traveling along axis = 4.9 us/Km\n", "\n", "time delay for traveling along path that is totally reflecting at the first interface = 4.93356 us/Km\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }