{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 1:Fluid properties" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1, Page No.9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "## Finding Specific weight,Density,Specific Gravity\n", "##Given\n", "V = 0.001 ##volume in m^3\n", "w = 9.6 ##weight in Newton\n", "g = 9.81 ##gravitational force in m/s^2\n", "\n", "##calculation\n", "spwt = (w/V) ##Specific weight in N/m^3\n", "rho = (spwt/g) ##density in kg/m^3\n", "spgr = (rho/1000) ##Specific gravity no units\n", "\n", "#Results\n", "print \"Specific weight = \",spwt,\"N/m^3\"\n", "print \"Density = \",round(rho,3),\"kg/m^3\"\n", "print \"Specific gravity = \",round(spgr,6)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Specific weight = 9600.0 N/m^3\n", "Density = 978.593 kg/m^3\n", "Specific gravity = 0.978593\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3, Page No.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Finding of Viscosity\n", "##Given\n", "dy=0.025E-3 ##distance in meter\n", "du=0.5 ##velocity in m/s \n", "tau=1.471 ##shear stress in N/m^2\n", "##To Find\n", "mu=tau*dy/du ##viscosity in Ns/m^2 \n", "mu1=mu*10 ## Viscosity in Poise\n", "print \"Viscosity =\",mu,\" in Ns/m^2\"\n", "print \"Viscosity =\",mu1,\" in Poise\" \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Viscosity = 7.355e-05 in Ns/m^2\n", "Viscosity = 0.0007355 in Poise\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4, Page No.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Finding of Diameter of water droplet\n", "##Given\n", "st=0.716 ##Surface Tension in N/m\n", "p=0.147E4 ##Pressure in N/m^2\n", "##To Find \n", "d=4*st/p ##Diameter in meter \n", "d1=d*1E2 ##Diameter in centimeter \n", "d2=d*1E3 ##Diameter in millimeter\n", "\n", "print \"d =\",round(d1,4),\"cm\"\n", "print \"d =\",round(d2,3),\"mm\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "d = 0.1948 cm\n", "d = 1.948 mm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5, Page No.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Finding of Shear Stress\n", "##Given\n", "##du/dy = vg\n", "vg=0.25 ##Velocity gradient in m/sec/meter\n", "nu=6.30E-4 ##Kinematic viscosity in m^2/sec\n", "rho=1268.4 ##Mass density in Kg/m^3\n", "mu=rho*nu ##Dynamic Viscosity\n", "##To Find\n", "tau=mu*vg ##Shear stress in N/m^2\n", "print \"Shear stress =\",tau,\"N/m^2\",\"=\",round(tau,1),\"N/m^2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Shear stress = 0.199773 N/m^2 = 0.2 N/m^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6, Page No.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Finding of increase of Pressure\n", "##Given\n", "k=2.07*1E6 ## Bulk Modulus in kN/m^2\n", "dv=0.01 ##Change in Volume\n", "##To Find\n", "p=k*(dv) ##Change in pressure\n", "print \"Increase in pressure =\",p,\"KN/m^2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Increase in pressure = 20700.0 KN/m^2\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7, Page No.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "##Finding of Cappilary rise\n", "##Given\n", "d=0.03*1E-2 ##Diameter in meter\n", "st=0.0735 ##Surface Tension in N/m\n", "x=0 ##contact angle in degree\n", "w=1000*9.81\n", "##To Find\n", "h=(4*st)*np.cos(x)/(w*d)\n", "h1=h*1E2\n", "print \"Capillary rise =\",round(h,6),\"m\"\n", "print \"Capillary rise =\",round(h1,4),\"cm\"\n", "print \"Capillary rise =\",round(h1,2),\"cm\" \n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capillary rise = 0.099898 m\n", "Capillary rise = 9.9898 cm\n", "Capillary rise = 9.99 cm\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8, Page No.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Finding of Kinematic Viscosity\n", "##Given\n", "tau=0.2452 ##Shear stress in N/m^2\n", "vg=0.2 ##Velocity Gradient in sec^-1\n", "rho=981 ##Density in Kg/m^3;\n", "##To Find \n", "mu=tau*1/vg\n", "print \"Dynamic Viscosity =\",round(mu,3),\"Ns/m^2\"\n", "nu=mu/rho\n", "nu1=nu*10000\n", "print \"Kinematic Viscosity =\",round(nu1,3),\"STOKE\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dynamic Viscosity = 1.226 Ns/m^2\n", "Kinematic Viscosity = 12.497 STOKE\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9, Page No.10" ] }, { "cell_type": "code", "collapsed": false, "input": [ "##Finding of Kinematic Viscosity\n", "##Given\n", "tau=0.2158 ##Shear stress in N/m^2\n", "vg=0.218 ##Velocity Gradient in sec^-1\n", "rho=959.5 ##Density in Kg/m^3;\n", "##To Find \n", "mu=tau*1/vg\n", "print \"Dynamic viscosity =\",round(mu,2),\"N-s/m^2\"\n", "nu=mu/rho\n", "nu1=nu*10000\n", "print \"Kinematic viscosity =\",round(nu1,1),\"stokes\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Dynamic viscosity = 0.99 N-s/m^2\n", "Kinematic viscosity = 10.3 stokes\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }