{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 3 Semoconductor Devices Fundamentals" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.2 page no:35" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistivity of the si doped with n−dopant is : \n", "0.089 ohm−cm \n" ] } ], "source": [ "def resistivity(u,n): #n:doped concentration =10**17 atoms/cubic cm, u: mobility of electrons =700square cm/v−sec .\n", " q=1.6*10**-19 #q: charge\n", " Res=1/(q*u*n)# since P is neglegible . \n", " print \"resistivity of the si doped with n−dopant is : \"\n", " print \"%0.3f ohm−cm \"%Res \n", "resistivity(10**17,700)\n", "# after executing calling resitivity ( u=700 and n =10ˆ17)i .e. , resistivity (10ˆ17 ,700) ;" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.3 page no:35" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistivity of intrinsic Ge is : \n", "2595245510.225 ohm−cm \n" ] } ], "source": [ "def resistivity(un,np): # un: electron concentration , up: hole concentration\n", " q=1.6*10**-19 #in coulumb \n", " ni=2.5*10*13 # concentration in cmˆ−3 \n", " Res=1/(q*ni*un*np) # since n=p=ni \n", " print \"resistivity of intrinsic Ge is : \"\n", " print \"%0.3f ohm−cm \"%Res \n", "resistivity(3900,1900)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.4 page no:37" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "hole concentrartion at 300K is : \n", "2250.000000 per cubic cm \n" ] } ], "source": [ "def holeconcentration(ni,Nd): # Nd: donar concentration ; since , Nd>>ni , so Nd=n=10ˆ17 atoms/cmˆ3.\n", " p=ni**2/Nd\n", " print \"hole concentrartion at 300K is : \"\n", " print \"%f per cubic cm \"%p\n", "holeconcentration(1.5*10**10,10**17);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.5 page no:39" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "resistivity of the copper is : \n", "2.29779411765e-08 ohm−meter\n" ] } ], "source": [ "q=1.6*10**-19;\n", "n=8.5*10**28;\n", "u=3.2*10**-3;\n", "p=1/(n*q*u);\n", "print \"resistivity of the copper is : \"\n", "print p,\" ohm−meter\"\n", "# 2.298D−08 means 2.298∗10ˆ −8" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exa 3.6 page no:41" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cu is: 0.0570814666846 pF\n", "Ccs is: 0.282102806737 pF\n", "gm is : 7.7519379845 mA/V\n", "C1 is: 3.32558139535 pF\n", "R1 is: 25.8 kilo ohm\n", "R0 is 645.0 kilo Ohm \n", "Ru is: 1290.0 Mega Ohm \n" ] } ], "source": [ "from math import sqrt\n", "\n", "Cuo=0.25; # collector −base depletion region capacitance in pico Farad(pF) for zero bias\n", "Ccso=1.5 ; # collector −substrate junction capacitance in pico Farad(pF) for zero bias\n", "q=1.6*10**-19 ; # electron charge in coulomb\n", "Ic=0.2 ; #collector current in ampere(A)\n", "k=8.6*10**-5; #in eV/K, where 1eV=1.6∗10ˆ−19\n", "T=300; # absolute temperature in kelvin (K)\n", "Vcb=10 ; #forward bias on the junction in volt(v)\n", "Vcs=15 ; # collector −substrate bias in volt (V)\n", "Cje=1 ; #depletion region capacitance in pico Farad(pF)\n", "Bo=200; #small signal current gain\n", "Tf=0.3; #transit time in forward direction in nano seconds (nS)\n", "n=2*10**-4; # proportionality constant for Ro and gm\n", "Vo=0.55; # bias voltage in volt (V)\n", "Cu=Cuo/sqrt(1+(Vcb/Vo));# collector −base capacitance\n", "print \"Cu is: \",Cu,\" pF\"\n", "Ccs=Ccso/sqrt(1+(Vcs/Vo)); # capacitance collector −substrate\n", "print \"Ccs is: \",Ccs,\"pF\"\n", "gm=q*Ic/(k*T*1.6*10**-19);# since k is in eV so converting it in Coulomb/Kelvin\n", "print \"gm is :\",gm,\"mA/V\"# transconductance of the bipolar transistor here\n", "Cb=Tf*gm;# diffusion capacitance in pico Farad(pF)\n", "C1=Cb+Cje;#small signal capacitance of bipolar transistor\n", "print \"C1 is: \",C1,\"pF\"\n", "R1=Bo/gm;# small signal input resistance of bipolar transistor\n", "print \"R1 is: \",R1,\" kilo ohm\"\n", "Ro=1/(n*gm);#small signal output resistance\n", "print \"R0 is \",Ro,\" kilo Ohm \"\n", "Ru=10*Bo*Ro/10**3;# collector −base resistance\n", "print \"Ru is: \",Ru,\"Mega Ohm \"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }