{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 6: Measuring instruments" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1: pg 235" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The shunt resistance required in (ohm) = 0.163\n" ] } ], "source": [ "#pg 235\n", "#calculate the shunt resistance\n", "# Given data\n", "Rm = 8.;# in ohm\n", "Im = 20.;# in mA\n", "Im = Im * 10**-3;# in A\n", "I = 1.;# in A\n", "#calculations\n", "# Multiplying factor\n", "N = I/Im;\n", "# Shunt resistance\n", "Rsh = Rm/(N-1);# in ohm\n", "#results\n", "print \"The shunt resistance required in (ohm) = \",round(Rsh,3)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2: pg 235" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The multiplying factor is 241.0\n" ] } ], "source": [ "#pg 235\n", "#calculate the multiplying factor\n", "# Given data\n", "Rm = 6;# in ohm\n", "Rsh = 0.025;# in ohm\n", "#calculations\n", "N = 1 + (Rm/Rsh);# multiplying factor\n", "#results\n", "print \"The multiplying factor is\",N\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 3: pg 235" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The resistance to be connected in parallel in (ohm) = 0.0761\n", "The resistance to be connected in series in (ohm) = 661.67\n" ] } ], "source": [ "#pg 235\n", "#calculate the resistances to be connected in parallel and series\n", "# Given data\n", "Rm = 5.;# in ohm\n", "Im = 15.;# in mA\n", "Im = Im * 10**-3;# in A\n", "I = 1.;# in A\n", "#calculations\n", "N = I/Im;# multiplying factor\n", "Rsh = Rm/(N-1);# in ohm\n", "print \"The resistance to be connected in parallel in (ohm) = \",round(Rsh,4)\n", "V = 10;# in V\n", "Rs = (V/Im)-Rm;# in ohm\n", "print \"The resistance to be connected in series in (ohm) = \",round(Rs,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4: pg 236" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The current range of instrument in A is 50.0\n" ] } ], "source": [ "#pg 236\n", "#calculate the current range of the instrument\n", "# Given data\n", "V=250.;# full scale voltage reading in V\n", "Rm = 2.;# in ohm\n", "Rsh = 2.;# in m ohm\n", "Rsh = Rsh * 10**-3;# in ohm\n", "R = 5000.;# in ohm\n", "#calculations\n", "Im = V/(Rm+R);# in A\n", "Ish = (Im*Rm)/Rsh;# in A\n", "# Current range of instrument\n", "I = Im+Ish;# in A\n", "#results\n", "print \"The current range of instrument in A is\",round(I)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 5: pg 236" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage error in (percentage) is 249.38\n", "The answer is a bit different from textbook due to rounding off error\n" ] } ], "source": [ "#pg 236\n", "#calculate the percentage error\n", "import math\n", "from math import acos,pi,cos\n", "# Given data\n", "V = 230.;# in V\n", "I = 35.;# in A\n", "N = 200.;\n", "t = 64.;# in sec\n", "kwh = 500.;\n", "#calculations\n", "phi= acos(0.8);# in radians\n", "Er = N/kwh;# in kWh\n", "Et = V*I*cos(phi)*t;# in Joules\n", "Et = Et/3600.;# in W hour\n", "Et = Et * 10**-3;# in kWh\n", "# percentage error\n", "PerError = ((Er-Et)/Et)*100;# in %\n", "#results\n", "print \"The percentage error in (percentage) is\",round(PerError,2)\n", "print 'The answer is a bit different from textbook due to rounding off error'\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 6: pg 237" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage error in (percentage) is 3.22\n", "The answer is a bit different from textbook due to rounding off error\n" ] } ], "source": [ "#pg 237\n", "#calculate the percentage error\n", "from math import acos,cos,pi\n", "# Given data\n", "I = 50.;# in A\n", "V = 230.;# in V\n", "N = 61.;\n", "t = 37.;# in sec\n", "KWh = 500.;\n", "#calculations\n", "phi= acos(1);# in radians\n", "Er = N/KWh;# in kWh\n", "Et = V*I*cos(phi)*t;# in Joules\n", "Et = Et/3600.;# in Wh\n", "Et = Et*10**-3;# in kWh\n", "# Percentage error\n", "PerError = ((Er-Et)/Et)*100;# in %\n", "#results\n", "print \"The percentage error in (percentage) is \",round(PerError,2)\n", "print 'The answer is a bit different from textbook due to rounding off error'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7: pg 237" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The series resistance in ohm is 24997.5\n" ] } ], "source": [ "#pg 237\n", "#calculate the series resistance\n", "# Given data\n", "Im = 20.;# in mA\n", "Im = Im * 10**-3;# in A\n", "Vm = 50.;# in mV\n", "Vm = Vm * 10**-3;# in V\n", "V = 500.;# in V\n", "#calculations\n", "Rm = Vm/Im;# in ohm\n", "Rs = (V/Im)-Rm;# in ohm\n", "#results\n", "print \"The series resistance in ohm is\",Rs\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8: pg 238" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The value of Rs in (ohm) is 9950.0\n", "The value of Rsh in (ohm) is 0.505\n" ] } ], "source": [ "#pg 238\n", "#calculate the values of resistances\n", "# Given data\n", "Rm = 50;# in ohm\n", "Im = 10;# in mA\n", "Im = Im * 10**-3;# in A\n", "V = 100;# in V\n", "#calculations\n", "Rs = (V/Im)-Rm;# in ohm\n", "print \"The value of Rs in (ohm) is\",Rs\n", "N = 1/Im;\n", "Rsh = Rm/(N-1);# in ohm\n", "print \"The value of Rsh in (ohm) is\",round(Rsh,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9: pg 238" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage error in (percentage) is 2.08\n" ] } ], "source": [ "#pg 238\n", "#calculate the percentage error\n", "# Given data\n", "from math import acos,cos\n", "I = 40.;# in A\n", "V = 230.;# in V\n", "N = 600.;\n", "t = 46.;# in sec\n", "#calculations\n", "phi= acos(1);# in radians\n", "P = V*I*cos(phi);# in W\n", "P = P * 10**-3;# in kW\n", "# 1 kWh = 500 revolution \n", "P = P * 500.;# in revolution\n", "T = (3600./t)*60;# in revolution\n", "# Percentage error\n", "PerError = ((T-P)/P)*100;# in %\n", "#results\n", "print \"The percentage error in (percentage) is\",round(PerError,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 10: pg 238" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage error in (percentage) is 4.167\n" ] } ], "source": [ "#pg 238\n", "#calculate the percentage error\n", "# Given data\n", "N = 100.;\n", "I = 20.;# in A\n", "V = 210.;# in V\n", "pf = 0.8;# in lad\n", "Er = 350.;# in rev\n", "a = 3.36;# assumed\n", "#calculations\n", "Et = (a*3600.)/3600;# in kWh\n", "# 1 kWh = 100;# revolution\n", "Et = Et*N;# revolution\n", "# Percentage error\n", "PerError = ((Er-Et)/Et)*100;# in %\n", "#results\n", "print \"The percentage error in (percentage) is\",round(PerError,3)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 11: pg 239" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The percentage error in (percentage) is 3.22\n" ] } ], "source": [ "#pg 239\n", "#calculate the percentage error\n", "# Given data\n", "I = 5.;# in A\n", "V = 230.;# in V\n", "N = 61.;# number of revolution\n", "t = 37.;# in sec\n", "# speed of the disc\n", "discSpeed= 500.;# in rev/kWh\n", "#calculations\n", "Er = N/discSpeed;\n", "Et = (V*I*t)/(3600*100);\n", "# percentage error\n", "PerError = ((Er-Et)/Et)*100;# in %\n", "#results\n", "print \"The percentage error in (percentage) is\",round(PerError,2)\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }